Vicinity of (Supermassive) Black Holes

Max Camenzind ZAH/LSW Heidelberg AGN Ierapetra June 2008

"Accretion Disk Resolved"

~ 1000 R_s limited by self-gravity

Temperature like a low-mass star (fully convective → Dynamos for B-fields) Internal state is like
a galactic disk:
→ fully turbulent,
probably driven by MRI

Topics – Vicinity of (SM)BHs

- **Black Hole gravity**: plasma frame-dragging, BZ mechanism and photon propagation.
- From **stellar to supermassive** Black Holes accretion states, turbulence and jet production
- New Unification scheme for AGN ?
- The role of environment of **nearby SMBHs** nuclear star cluster (GC, M 31, NGC 1068)
- ... but probably not in ellipticals (M 87, ...)
- Physics of the ergosphere and plasma loading

"Black Holes have 2 Hairs"

Camenzind 2006

Black Holes have 2 Energy Reservoirs

- Potential energy \rightarrow tapped by accretion $\varepsilon(a, dotm)$
- Rotational energy → tapped by magnetic fields, similar to rotating neutron stars (BZ)

$$\begin{split} L_{Rot} &= E_{Rot}/t_{brake} \\ &\sim 10^{45} \ erg/s \ (M_{H}/10^{9} \ M_{S}) \ (t_{H}/t_{brake}) \\ L_{Rot} &= E_{Rot}/t_{brake} \\ &\sim 10^{37} \ erg/s \ (M_{H}/10 \ M_{S}) \ (t_{H}/t_{brake}) \end{split}$$

$$t_{brake} = f(a, B,...) [BZ 1977, ...]$$

Strong Gravity near Black Holes

- (i) Plasma is dragged along near BHs by frame-dragging, independent of its initial angular momentum → when a = 0, plasma cannot rotate near the horion → leads to incorrect boundary conditions in pseudo-Newtonian simulations.
- (ii) Photons are similarly affected \rightarrow characteristic line profiles (e.g. Fe K α line).
- (iii) characteristic lightcurves emitted by hot spots near horizon.

Each form will be driven within the e → Boundary Layer ned

Gravitational E

 Boundary layer: Angular frequency observers (fixed stars) is given by (v)

$$\Omega = rac{U^{\phi}}{U^t}$$

where U^{μ} is the 4-velocity of matpoloidal motion of matter, angular f gular momentum are related over a l

$$\Omega_{\rm H} = \omega(r_+)$$
 $\Omega = \omega + \frac{\alpha^2}{R^2} \frac{\lambda}{1 - \omega \lambda}$

 $R \equiv \sqrt{h_{\phi\phi}}$ is the cylindrical radius.

In Schwarzs@hild: →No rotation near Horizon !

Twisting of Magnetic Fields

- Except for induction terms, evolution of toroidal magnetic field ~ Newtonian MHD
- \rightarrow Source: Differential plasma rotation
- \rightarrow Schwarzschild: anti-shear ! \rightarrow decoupling from hor
- **≻→** Extreme Kerr: biggest effect !

$$\begin{split} \frac{\partial T}{\partial t} + \alpha (\boldsymbol{v}_{p} \cdot \nabla) T &- \alpha \tilde{\omega}^{2} \nabla \cdot \left(\frac{T}{\tilde{\omega}^{2}} \boldsymbol{v}_{p} \right) - \alpha \tilde{\omega}^{2} \nabla \cdot \left(\frac{\eta}{\gamma \tilde{\omega}^{2}} \nabla T \right) \\ \mathbf{T} \sim \mathbf{RB}_{\phi} &= \alpha \tilde{\omega}^{2} \mathbf{B}_{p} \cdot \nabla \Omega + \alpha \tilde{\omega} \, \boldsymbol{e}_{\phi} \cdot \nabla \times \left(\frac{\eta}{\gamma} \, \frac{\partial \boldsymbol{E}_{p}}{\partial t} \right) \,. \end{split}$$

Operates outside horizon

BHs – Magnetic fields are twisted ! Field lines and rotating Black Holes

Hawley 2005

Understanding BZ Mechanism

- The unavoidable rotation of plasma inside ergosphere **forces magnetic fields to rotate** as well.
- The magnetic twist propagates away from the BH, resulting in an outgoing Poynting flux.
- As a feedback action, magnetic forces push plasma into **orbits with negative mechanical energy** at infinity before they plunge into the BH.
- Total flux of energy is conserved: it changes from almost purely mechanical near horizon to Poynting flux further away, which is then ultimately transformed into mechanical energy at infinity.

Tracing Spots around BHs -Direct and Indirect Images

A. Müller, B. Zink, A. Kaminski, F. Neuschäfer [LSW 2003 – 2008]

Hot Spot around eKerr: Orbit = 7 R_g, 60° Inclination [Neuschäfer LSW]

Strong Gravity Effects – Existence of (inf)Horizon ?

- ... or, is the Black Hole really black?
- According to modern concepts, the internal state of the BH is probably not a classical vacuum – a vacuum is never empty (Universe)!
- \blacktriangleright → Mass of BH is in vacuum energy with EoS P = - ρ → to non-singular solutions.
- S→ Essential question: how is accreting matter transformed to vacuum energy? $P = \rho$ at hor
- \rightarrow Would this produce violent reactions?

High Mass Objects Messier 33 X-7 Wind-Disk Accretion

Blue Supergiant 70 solar masses

Orosz et al.: Nature 2007

Messier 33 X-7 Period: 3,45 d 2007 identified →15,7 sol mass → within 1 Mio yrs to a double BH system

Object	Bin. Period	Donor Star	Mass of BH	Spin a
GRS1915+105	33.5 d	K/M III	14 +/- 4	0.9 - 1.0
V404 Cyg	6.470 d	K0 IV	12 +/- 2	-
Cyg X-1	5.600 d	O9.7ab	8 +/- 2	0.4 - 0.6
LMC X-1	4.229 d	O7 III	> 4	-
M33 X-7	3.45 d	O7 III	15.6 +/- 1.4	0.77+/-0.05
LMC X-3	1.704 d	B3 V	7.6 +/- 1.2	0.2 - 0.4
GRO J1655-40	2.620 d	F3 IV	6.3 +/- 0.3	0.6 - 0.8
XTEJ1819-254	2.816 d	B9 III	7.1 +/- 0.3	-
GX 339-4	1.754 d	Stripped giant	> 7	0.93+/-0.04 (Suz)
XTEJ1550-564	1.542 d	G8 IV	9.6 +/- 1.2	-
4U 1543-47	1.125 d	A2 V	9.4 +/- 1.0	0.75-0.85
Н 1705-250	0.520 d	K3 V	6 +/- 2	-
GS 1124-168	0.433 d	K3 V	7.0 +/- 0.6	-
XTE 1859+226	0.382 d	-	-	-
GS 2000+25	0.345 d	K3 V	7.5 +/- 0.3	-
A 0620-00	0.325 d	K4 V	11 +/- 2	-
XTEJ1650-500	0.321 d	K4 V	-	-
GRS 1009-45	0.283 d	K7 V	5.2 +/- 0.6	-
GROJ0422+32	0.212 d	M2 V	4 +/- 1	-
XTEJ1118+480	0.171 d	K5 V	6.8 +/- 0.4	-

Object	Core Radius	Donor Nucleus	Mass of BH	Expected Spin
Galactic Center	1 pc	NStarCluster	4 Mio	0.99 – 1.0 (Asch)
Andromeda (Sb)	10 pc	NStarCluster	40 Mio	a < 0.6 ?
Circinus (Sb)	-	NStarCluster	10 Mio	a < 0,5 ?
NGC 1068 (SBb)	10 pc	NStarCluster	10 Mio	Low spin
MCG-6-30-15		NStarCluster	4 Mio	-
Ark 564 (Sb)		NStarCluster	3 Mio	-
NGC 4151 (Sb)		NStarCluster	10 Mio	-
NGC 5548 (Sb)		NStarCluster	80 Mio	-
3C 120 (Sa)		Bulge-dominated	40 Mio	High Spin
M 87 (E1)	680 рс	E-Bulge-Core/Disk	3000 Mio	a ~ 0.9 ?
M 84 (E0)	1000 pc	E-Bulge	1000 Mio	-
Sombrero (S0)	10 pc	NStarCluster	1000 Mio	-
Cyg A (E+S)		E-Bulge/Disk	3200 Mio (T)	-
BL Lac		E-Bulge	200 Mio	-
Hercules A	800 pc	E-Bulge	1000 Mio	a ~ 0.98 ?
Typical Quasar	1000 pc	E-Bulge	1000 Mio	-
3C 273	1000 pc	E-Bulge	3000 Mio	a ~ 0.98 ?

Vicinity of SMBH in Sy-Galaxies Nucleus and Dust-Torus

Dust is heated by UV-flux from disk

$$T_{\rm N}(r) = 194 \left(\frac{L_{\rm acc}}{r^2} \frac{\rm pc^2}{10^{10} \, \rm L_{\odot}} \right)^{1/4} \, \rm K$$

With exact opacity:

$$T_{\rm B}(r) = 624 \left(\frac{L_{\rm acc}}{r^2} \frac{\rm pc^2}{10^{10} \, \rm L_{\odot}} \right)^{1/5.6} \, \rm K.$$

K. Tristram et al. 2007 M. Schartmann et al. 2008

Nuclear Star Cluster in NGC 1068

Fig. 23.— Maps of the central few arcsec of NGC 1068 (1" = 70 pc): H-band non-stellar continuum (far left) and stellar continuum (centre left); also Br γ line flux (center right) and Br γ equivalent width (far right). In each case, the centre (as defined by the non-stellar continuum) is marked by a crossed circle. The colour scale is shown on the right, as percentage of the peak in each map (and also as $W_{\rm Br}\gamma$ in Å).

Davies et al. 2007 / d = 14.4 pc / 1'' = 70 pc

NGC 1068 – Rotating Nucleus

Davies et al. 2007 / 1'' = 70 pc

Black Holes in Galactic Nuclei

- stellar bulge gives BH mass link between galaxy and BH (Magorrian relation: better between σ of stars and M_{BH})
- QSOs peak at $z\sim 2-3$, $L/L_{Edd} \sim 1$ onto $\sim 10^8 M_0$ (local NLS1)

Vicinity of SMBH in M87

BH embedded into stellar core of 650 pc. → No molecular Torus !!!! - only disk - in contrast to many bright 3C sources

Black Hole: 2.0 – 7 Solar Masses

Turbulent Accretion Disk

Typically a K Star ~ 0,7 Solar Masses fills Roche-Lobe → Transient Source LMXB Binary System → Unsteady Mass Exchange → X-Ray Flares

 $\sim 10000 R_{s}$

LMXBs → Transients are variable: VARIABILITY on all Time Scales

• Variations = changes in the state of the source

 lightcurves: GX 339-4 / GRS 1915+105

♥ Variations on very different time scales !

asy" observations for human time scale

10 Mio years in Quasars

X (2-10 keV)

Radio (2.25 GHz)

Rau et al (2003)

Accretion States - Spectra

- Bewildering variety for disky spectra in single objects!
- High L/L_{Edd} : soft spectrum, peaks at kT_{max} often disc-like, plus tail.
- All XBH in RXTE archive consistent with SAME spectral evolution $10^{-3} < L/L_{Edd} < 1$.

Soft X-ray count rate

Koerding et al. 2006;

During the Transition from Low/hard State to High/soft state, Mdot Decreases

State Transitions around BHs in Numerical Simulations

Machida 2006

Ad Truncation Paradigm

- ... is basis for all MRI simulations, which neglect radiation on disk instabilities.
- ... if truncation paradigm were not satisfied, forget about all results obtained from those simulations.
- ... gets support from X-ray timing: Cyg X-1 etc, and the fact that jets disappear in VHS.
- ... 2D & 3D simulations for the transition from optically thick to optically thin and vice versa disks still missing (hysteresis!).

What is the Role of the Black Hole Spin ?

Black Hole Spin Plane dot M/dot M_Ed SupercriticalSlim Disk Accretion Quasars NLSy1, QSOs Seyferts 1 & 2 10⁻¹ **FR IIs BL Lacs** 10⁻² FR Is M 87 10-3 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 Spin a

Camenzind 2008

Truncated Disks also in NSs !

LMXB "Atoll Sources"

Low luminosity (atoll sources) have luminosities few x 10^{36} erg/s $\sim 0.01 - 0.05 L_{Edd}$ Two spectral states: soft (look like a Z-source) and hard (look like an X-ray binary with a black hole e.g. Cyg X-1)

Figure from Natalucci et al (2004) (BeppoSAX)

Accreting Neutron Stars Atoll Sources: $L < 0.05 L_{Ed}$

Turbulent Accretion is ks around CObjects Reactive-Diffusion S tochas tic S ys tem is

Low frequency pert generated in outer disk propagate inwards to X-ray region

PDS of HX: 2 Components– Cyg X-2

Marat Gilfanov 2008; Lev Titarchuk et al. 2007

Is Disk Turbulence due to MRI ?

- Initial torus configuration
- Pseudo-Newtonian 10 M_s
- SRelativistic + conservative PLUTO code
- Torus ~ 30 r_g
- **≻→** 1500 lcts
- ~ 26 ISCO rotations
- 1 lct = r_g/c

 $\forall v_{lct} = 20,000 \text{ Hz}$

Roman Gold LSW 2008

Magnetorotational Turbulence

• MRI is carried by slow magnetosonic waves (or inertial-Alfven waves), which replace the acoustic-inertial waves in the pure hydro case for disks

$$\boldsymbol{\omega}^{2} = [\boldsymbol{\kappa}^{2} + 2(\mathbf{k} \cdot \mathbf{V}_{A})^{2}]/2 + [\boldsymbol{\kappa}^{4} + 2(\mathbf{k} \cdot \mathbf{V}_{A})^{4} + ...]^{1/2}/2$$

 κ : epicyclic frequency $\sim \Omega,$ which vanishes at ISCO!

• At each ring with $\Omega' < 0$, a resonance is generated with wave-length $\lambda \sim 2\pi V_A / \Omega \sim 2\pi H / \beta^{1/2}$ Magneto-Rotational Turbulence in Taylor-Couette Flows

Transports Angular Momentum

⇒ Streaks of high and low speed or angular momentum

Cattaneo et al.

- Maxwell stress flux domination due to the correlation of $B_{_{\rm T}}$ and $B_{_{\varphi}}$

- Angular momentum is carried outwards (inwards) by magnetic fluctuations that correspond to winding (unwinding) spirals -i.e. getting longer (shorter)
- In a random circular sheared motion there are more winding than unwinding spirals (can wind forever; can only unwind for a finite time)
- If angular velocity increases inwards (due to shear) Maxwell stress will carry angular momentum outwards (kinematic effect)

Turbulence **is** Visible in HXs from Stellar BHs to SMBHs

Ian McHardy

Lev Titarchuk et al. 2007

Keplerian at ISCO

Camenzind 2007/2008

Jets are formed near BH / M87 @ 15 GHz

Kovalev et al. 2007

Physics of the Ergosphere

 Magnetic fields are dragged inwards by disk accretion - probably generated by dynamos in the cool convective disk at R ~ 1000R_s (quadrupole?)

→ ,,zero-net flux jets", all magnetic fields closed

- Plasma loaded to the magnetosphere drag the fields in polar directions \rightarrow can be collimated by currents to jets on scales ~ 1000 R_g.
- Field lines are closed ! → Jets = Reverse field pinch → instabilities along jet boundary (M 87).
- Poloidal fields cover the horizon → Poynting flux generation inside ergosphere.
- Poynting fluxes are transformed to kinetic energy along converging flux tubes.

Launching Jets around BHs

Poloidal fields are advected inwards and cover the BH with magnetosphere

Ergosphere: EM dominated

JETS: Poynting flux converted into kinetic energy, probably have a spinesheath structure

Zero-Net Flux Magnetic Structure: Quadrupole Geometry leads to Reconnection, makes Jets Weaker and Episodic Outbursts

2.00

1,00

0 × 0.00

-1,00

-2.00

Beckwith, Hawley & Krolik 2008

Small dipole loops lead to similar results; toroidal field makes no jet at all.

Poloidal fields should retain a large-scale structure for at least ~1500 M to drive a strong jet.

Flow Structure from Core Collapse

log(Plasma beta)

Komissarov & Barkov 2008

log(Tor/pol field) strength

Injection Problem

Stagnation surface

➔ Funnel fields exceed disk fields by two orders of magnitude

 \rightarrow i for magnetisation !

- ➔ Toroidal field is weak in funnel, reaches maximum at funnel edge.
- ➔ Rotational energy is extracted by Poynting flux

Komissarov & Barkov 2008

MHD Characteristic Surfaces - Collimation

Jets are Magnetically Collimated @ pc-Scale

Recollimation Shock ?

Kink instability Current driven instabilities ?

Hot disk: VHS ?

BL Lac Marscher et al. 2008

1 mas = 1.2 pc

Conclusions

- Disk physics essential from self-gravity radius down to horizon → feeding B fields.
- You must measure **spin a** for SMBHs.
- Analogies between µQuasars and Quasars.
- Future: extended disk simulations including radiation and relativistic effects
 → RadGRMHD is the ultimate challenge!
- Ergospheric physics is complex: structure of magnetosphere covering ergosphere, loading of plasma, spine-sheath structure, ...

Textbook: Compact Objects in Astrophysics – Springer 2007