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3120 The radio jet

3C120 HST image + VLA image by Walker et al.

It is an unusual active galaxy,
classified as both, Seyfert 1 and
broad line radio galaxy.

= Complex optical morphology,
possibly the result of a merger
(Moles et al. 1988, Garcia-Lorenzo
et al. 2005)
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SC12( The radio jet

3C120
» Prominent radio jet from pc to kpc
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= One of the first sources in which
superluminal motions (5-6 c) were
found

= Very active jet, with multiple
components and very rich structure
even a the shortest wavelengths

» One of the closest superluminals.
At z=0.033 (~125 Mpc), the VLBA
at 7 mm provides a linear
resolution of 0.07pc (~10* R,)

» One of the best sources for
studying the inner jet properties
in superluminals

Walker & Gémez
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3C120 Jet external medium interaction
Gomez et al. (2000)
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56120) New data set
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Rotation Measure in 3C120

» Confirmed rotation measure across epochs
» Varies with time

» Localized at a particular jet region, mapped by the
passing of superluminal components

Rotation measure averaged across time

Rotation Measure (red/2)
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3C120

Helical' magnetic field?

» Helical magnetic fields in the jets may appear naturally through the rotation of the accretion
disk, and may have an role in the formation and collimation of jets

» Gradients in Faraday rotation across the jet may be indicative of helical magnetic fields

wrapping the jet (Blandford 1993)

= Our observations provide information to the debate about whereas helical magnetic fields

are present in the inner jets or not

= Asymmetry in polarization degree is also consistent with the presence of a helical magnetic

field

= A two-fluid model, with an internal emitting jet and a sheath of thermal electrons, both
immersed in a helical magnetic field, could provide an interpretation for the observed

transverse profiles of pol deg and RM.
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3C 120 Helical magnetic field?

» Helical magnetic fields in the jets may appear naturally through the rotation of the accretion
disk, and may have an role in the formation and collimation of jets

» Gradients in Faraday rotation across the jet may be indicative of helical magnetic fields
wrapping the jet (Blandford 1993)

= Our observations provide information to the debate about whereas helical magnetic fields
are present in the inner jets or not

»Asymmetry in polarization degree is also consistent with the presence of a helical magnetic
field

= A two-fluid model, with an internal emitting jet and a sheath of thermal electrons, both
immersed in a helical magnetic field, could provide an interpretation for the observed
transverse profiles of pol deg and RM. Rotation measure averaged across time

Ratation Mg d/n3

» The RM-corrected EVPAS, predominantly
perpendicular to the jet axis, require a :
dominant poloidal (as measured in the frame §
of the jet fluid) magnetic field in the emitting |
region (Lyutikov et al. 2005).
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Gomez et al. (in press) arXiv:0805.4797



= A helical magnetic field in a sheath around the jet may explain some of the phenomenology

= BUT NOT ALL! Helical magnetic field is not able to explain the Faraday rotation gradient at

Rotation measure averaged across time

e (redsd

» However, a cloud or a dense ionized
external medium interacting with the jet
explains, ;

» Gradient of Faraday rotation to the
South

» Gradient of depolarization to the
South

= Bend of the jet

= Flaring of jet features when
approaching the region (interaction
produces a region of jet enhanced

pressure)
] = Enhanced spectral index (through
e free-free absorption by the cloud)

R ST S Gomez et al. (in press) arXiv:0805.4797



Je 20 Conclusions

= Jet external medium interaction explains all the observed
phenomenology in the jet of 3C120

= A helical magnetic field in a two-fluid jet model can be
accommodated within this scenario, but by itself cannot explain the
existence of the localized Faraday rotation region

= Other sources showing transverse structure also fail to show clear
evidence of a helical magnetic field (see Zavala & Taylor 2005)

»= Even when helical magnetic fields are supported by reasonable and
elaborated theoretical and numerical models

» Real jets seem to conspire to “hide” them.



