Luminous buried AGNs in the local universe ULIRGs

origin of galaxy down-sizing ?

## Masa Imanishi

## NAOJ (National Astronomical Observatory of Japan)



Subaru



Spitzer



**AKARI** 

### **Ultraluminous infrared galaxies (ULIRGs)**

L(IR) > 10^12 Lsun (Normal spiral ~ 10^10 Lsun)



Luminous energy source is hidden behind dust





#### Compact cores (<500pc) are energetically dominant





## AGNs in ULIRGs are buried



# AGNs obscured by torus-shaped dust







## ULIRGs have a large amount of nuclear gas and dust

#### **Buried AGNs are elusive**

70% ULIRGs = non-Sy







## 2. Dust absorption feature strength



Tau(3.4) < 0.2 (Imanishi & Maloney 2003 ApJ 588 165





### 3. Dust temperature gradient









#### Strong abs ULIRGs -> often show T-gradient



#### **Our line-of-sight obscuration: Non-Sy >> Sy2**



Amount of nuclear dust: Non-Sy >> S

#### **Buried AGNs: both warm/cool FIR colors**



cool ¥ starburst





#### 2.5-5 um spectroscopy

#### z > 0.15 ULIRG

#### **Unaffected by Earth's atmosphere**





#### **Buried AGNs increase with LIR**



### AGN-feedback for galaxy down-sizing ?

## Summary

1. Buried AGNs : <u>30-50% non-Sy ULIRGs</u> warm & cool

2. Nuclear dust amount: non-Sy ULIRGs > Sy2 ULIRGs

Optical Sy (non-)detectability depends on the amount of nuclear dust

Imanishi et al. 2006 ApJ 637 114 (Subaru) Imanishi et al. 2007 ApJS 171 72 (Spitzer) Imanishi et al. 2008 PASJ submitted (AKARI)