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Cosmic Ray Acceleration

Acceleration depends on “magnetic rigidity”, p = E/Ze, rather
than energy.

In magnetic field B the rigidity gain rate can be given by
reain(p) = (1/p)(dp/dt) = E(p)c*Bp~1

where £(p)<1 is the acceleration rate parameter

Subjectto r
solving

g < Rmax the maximum energy Is found by

'rga,in(Ema}{} — 'rl{::-rss(Ema}{} — Tsynuh(Enlax} 4 1/?51113}{ = 0.



Pion photoproduction cross section vs gamma-ray energy
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In the rest frame of a 10%° eV proton, 2.725 K CMB photons
are gamma-rays!

* Photoproduction may cut off UHE CR acceleration, cause
the GZK cut-off and initiate cascading down to ~GeV energy
gamma-rays.

*For nuclei photo-disintegration on the CMB and IR/Opt/UV
fields are important (e.g. Rachen 1993).



The interaction mean free path on the CMB plus IR/Opt/UV EBL

(m.f.p. plotted vs “magnetic rigidity” rather than energy)
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A revised “Hillas Plot” for shock-accelerated protons
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maximum possible energy gain
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Detectors of the Pierre Auger Array

Particle detector (foreground) and fluorescence detector (on hill)




Layout of the Pierre Auger Array
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Why Centaurus A?

Arrival directions of UHE CR above 57 EeV (circles) observed by the Auger Observatory
compared with nearby AGN (crosses). (57 Eev = 5.7x1019 eV)

Galacti :planee_

Centaurus A, the nearest Active Galactic Nucleus (AGN) could be
Responsible for some or most of the UHE CR.

The latest Auger data does not strengthen this correlation with Cen A, but
because of its proximity Cen A remains an interesting possibility.



Cosmic Ray Acceleration at Cen A

Cuoco & Hannestad (2008)

« predicted the flux of UHE neutrinos from the Centaurus A jets using a
model of an optically thick pion photo-production source described by
Mannheim et al. (2001).

 They assume that accelerated cosmic ray protons are perfectly
magnetically contained, and escape only through photo-hadronic
Interactions which convert them to neutrons.

Kachelriess et al. (2009)

« They assume a CR flux com-posed of protons, normalized with the
assumption that 2 ofthe UHE Auger events are from Centaurus A. They
consider several possible proton injection spectra, with acceleration
occurring either in regular electromagnetic fields close to the core of the
AGN or through shock acceleration in the jets, and predict the resulting
neutrino and gamma-ray spectra for each.

 They argue that the jet acceleration scenarios are excluded by TeV
gamma-ray data.



Rieger & Aharonian (2009)

Suggest that shear acceleration along the kpc jet may accelerate
protons beyond 5x10° eV.

Gopal-Krishna, Biermann, de Souza & Wiita (ApJ, in press)

Show that UHECR production at a spatially intermediate location
about 15 kpc northeast from the nucleus, where the jet emerging
from the nucleus is observed to strike a large star-forming shell of
gas, is plausible.

Many cosmic rays arising from a starburst, with a composition
enhanced in heavy elements near the knee region around PeV, are
boosted to ultra-high energies by the relativistic shock of a newly
oriented jet.

They are able to predict the composition suggested by the Auger
data as well as an anisotropy in the hemisphere toward Cen A.



Declination (J2000)

Acceleration in giant lobes of Cen A

———==== Lobes: northern ~300 x 120 kpc,
\ southern ~ 250 x 200 kpc.

The gyroradius in a 1mG of a 102° eV proton
field is 100 kpc, and for a 1020 eV iron nucleus
Is ~3 kpc.

Hardcastle et al. (2009)

e Analyzed 408MHz - 90GHz WMAP data.
B~3.3uG. Expect turbulent modes lose to speed of

light. Conclude stochastic acceleration to UHECR
possible.

Feain et al (2010).
« Faraday rotation of 121 sources behind the lobes.
« IfB=1.3B, uG then <n,> < 5x10-° B, cm3.

Benford & Protheroe (2008)

» Acceleration in the “fossil” lobes, by electric fields
induced as the magnetic field settles down to an
ordered field such as a spheromak configuration

o o am produced in plasma physics experiments, or during

Fight Azcension (120007 decay of such fields as a result of reconnection may
be possible.




. Rachen (2009).
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Propagation from Cen A
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Time delay In propagating from Cen A

The propagation time will depend on distance d, rigidity p,
coherence length |, and magnetic field B.

For gyroradii ry> | the additional delay due to multiple deflections
IS (e.g. Sigl)

_— AE L 2 d : L . 2 !
ctaenlp,d) = 0.045 (1020 V) (1 I"-.-Ipc) ( Mpﬂ) (10_? G) Hpe

For gyroradii g < | the delay due to diffusion is with diffusion
coefficient D = D, p1/3is

—1/3
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Neutrinos from Cen A? (for amusement if time permits)
In general, pion photoproduction interactions during acceleration and
propagation result in neutrino production, but Cen A is too near for

significant neutrino production during propagation.
Bethe—-Heitler pair production

low E photon
pion photoproduction

pion photoproduction p low E photon

c P
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The cascading results in a flux of gamma-rays at energies below ~10 GeV, and

neutrinos above ~ 108 GeV.



Lunar Cherenkov Technique

Pioneered by Hankins, Ekers and O’Sullivan (1996) using the Parkes radio
telescope.

Relies on the “Askaryan effect” whereby cascades in dense media acquire a
negative charge excess due to positron annihilation and scattering of atomic
electrons into the cascade — for cascade dimensions shorter than the observing
wavelength the Cherenkov emission process is coherent.

Very non-standard radio astronomy — search for nanosecond duration pulses.
Uses specialized hardware with more in common with accelerator experiments.




LUNASKA Collaboration

C. W. James"?*, R. J. Protheroe?, R. D. Ekers®, J. Alvarez-Muniz*,
R. A. McFadden®®°, C. J. Phillips®, P. Roberts®, J. D. Bray>?

1IMAPP, Radboud L‘Tnévers-é-ty: Nigmegen, The Netherlands

2School of Chemistry € Physics, Univ. of Adelaide, Australia.

3 Australia Telescope National Facility, CSIRO Astronomy & Space Science, Epping, Australia.
4 Dept. Fisica de Particulas & IGFAE, Univ. Santiago de Compostela, Spain.

5 School of Physics, Univ. of Melbourne, Australia.

plus

Anita Reimer (Innsbruck University, Austria),

Peter Hall (Curtin University, Perth, Australia),

Todor Stanev (University of Delaware, USA),

John O’Sullivan (Australia Telescope National Facility, Sydney)

The LUNASKA Collaboration has been actively
developing the lunar Cherenkov technique and has
searched for UHE neutrinos from Cen A.



LUNASKA 2008 observations using Australia Telescope Compact Array
We chose observing dates/times to give the greatest

combined exposure to Cen A.
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The small circles show the directions of Cen A
UHE CR events above 5.6 x 10!” eV



We have calculated flux limits for GLUE and RICE based
on their published data, as well as for our 2008 observations.
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2010-2014: LUNASKA-Parkes

Our 2010-11 observations use the multi-beam receivers (right)
In the focal plane of the Parkes radio telescope (left).




Our 2012 observations “Parkes PAF” will use the Australian
SKA pathfinder (ASKAP) phased array feed (PAF) hardware in
the focal plane of the Parkes radio telescope enabling the whole
Lunar limb to be observed simultaneously (funding applied for).

A prototype ASKAP PAF is shown on an ASKAP test antenna.
It is being designed by a team led by John O’Sullivan who

developed in 1995 the WLAN technology we all use - he is also
a LUNASKA member.
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Conclusion

Cen A may be responsible for some of the observed UHE cosmic
rays.

Despite its proximity, there will be composition changes during
propagation — while protons are unaffected, all Fe above 1.5x10%°
eV will be photo-disintegrated, but there will be “heavy” spallation
products remaining.

Time delays due to magnetic deflection of due to diffusion will be
rigidity-dependent and so affect protons and heavey nuclei of the
same energy differently.

Time delays of up to tens of Myr are possible, implying the cosmic
rays arriving now may have been accelerated when Cen A was a
much more powerful AGN.

If the spectrum of accelerated protons is cut off due to pion
photoproduction, then there may be a detectable UHE neutrino
flux from Cen A.



	Acceleration in giant lobes of Cen A
	Time delay in propagating from Cen A
	Lunar Cherenkov Technique 
	LUNASKA Collaboration
	Conclusion�



