The Broadband SEDs of the MOJAVE sample

Chang, Chin-Shin^{1,2,3}

Max-Planck-Institut für Radioastronomie

¹Member of International Max Planck Research School of Astronomy and Astrophysics ²Member of ESTRELA Network ³Affiliated graduate student of the *Fermi*/LAT collaboration

Eduardo Ros

Departament d'Astronomia i Astrofísica Universitat de València, Spain

Matthias Kadler

Dr. Remeis-Sternwarte & ECAP, Germany CRESST/NASA GSFC & USRA, USA

Moritz Böck, Joern Wilms, Laura Barragán Dr. Remeis-Sternwarte & ECAP, Germany

M. F. Aller & H. D. Aller (UMRAO)

Astronomy Department, University of Michigan, USA

L. Fuhrmann, E. Angelakis & I. Nestoras (F-GAMMA) Max-Planck-Institut für Radioastronomie, Germany

H. Ungerechts (IRAM)

Institut de Radio Astronomie Millimétrique, Spain

The Emission of AGN Jets

- Open questions:
 - Where is the emission of AGN jets generated
 - What are the mechanisms to produce high-energy emission of blazars: leptonic (SSC, EIC), hadronic (photon-photon), or both?

Fermi's Impact

- "The Spectral Energy Distribution of *Fermi* Bright Blazars" (Abdo et al. 2010, 716,30), a <u>γ-ray selected</u> sample was studied.
- We want to attack the problem using a <u>radio-selected</u> sample

The Broadband SED Catalog

- Construct a broadband SED catalog of 135 MOJAVE sources (statistically complete, see Lister, this conf.)
- The MOJAVE sample has
 - 101 flat-spectrum radio quasars
 - 22 BL Lac objects
 - 8 radio galaxies, 4 unidentified objects

Continuously monitored in the radio band

• Use <u>simultaneous</u> datasets from radio to γ -ray bands

Broadband SED data

- [γ-ray] *Fermi* LAT 1yr catalog data (Abdo et al. 2010, ApJ 715, 429) for 85 sources; upper-limits for 50 sources (M. Boeck et al.)
- *Swift* observations
 - [X-ray/Optical] XRT/UVOT: Dedicated program to observe MOJAVE sources, observations after August 2008
 - [Hard X-ray] BAT: 22-month catalog (J. Tueller et al. 2010, accepted by the ApJS)
- [Radio] MOJAVE program (Lister et al. 2009, ApJ 137, 3718)
- [Radio] UMRAO monitoring (Aller et al. 2003, ApJ 586, 33)
- [Radio] FGAMMA monitoring (Fuhrmann et al. & Angelakis et al. 2010, this conf.)

Broadband SED data

- [γ-ray] *Fermi* LAT 1yr catalog data (Abdo et al. 2010, ApJ 715, 429) for 85 sources; upper-limits for 50 sources (M. Boeck et al.)
- *Swift* observations
 - [X-ray/Optical] XRT/UVOT: Dedicated program to observe MOJAVE sources, observations after August 2008

Chang, Chin-Shin 張靖歆

Fermi meets Jansky, Bonn

Swift simultaneous obs.

Simultaneous *Swift* data *Fermi* 1FGL Non *Fermi* 1FGL

Currently using Swift data before Aug. 2008; will be completed by the dedicated Swift program

	0119+115	0730+504	1150+812	1637+574	1936-155	2121+053	1045-188	2134+004
	0224+671	0738+313	1213-172	1655+077	1957+405	2128-123	1417+385	0945+408
	0238-084	0804+499	1413+135	1741-038	2005+403	2136+141	1638+398	0742+103
0003-066	0333+321	0923+392	1458+718	1751+288	2008-159	2201+315	2021+317	0642+449
0007+106	0430+052	0955+476	1504-166	1800+440	2021+614	2216-038	1758+388	0552+398
0016+731	0607-157	1038+064	1538+149	1928+738	2037+511	1036+054	2243-123	2354-456
0048-097	0403-132	0605-085	0805-077	0906+015	1228+126	0109+224	0212+735	0234+26
0059+581	0415+379	0648-165	0808+019	0917+624	1253-055	0202+149	0215+015	1739+522
0106+013	0420-014	0716+714	0814+425	1055+018	1308+326	1611+343	1823+568	2201+171
0133+476	0422+004	0727-115	0823+033	1124-186	1324+224	1633+382	1828+487	2209+236
0202+319	0446+112	0735+178	0827+243	1127-145	1334-127	1641+399	1849+670	2223-052
0235+164	0458-020	0736+017	0829+046	1156+295	1502+106	1726+455	1958-179	2227-088
0300+470	0528+134	0748+126	0836+710	1219+044	1510-089	1730-130	2131-021	2230+114
0316+413	0529+075	0754+100	0838+133	1222+216	1546+027	1749+096	2145+067	2251+158
0336-019	0529+483		0851+202	1226+023	1548+056	1803+784	2155-152	2331+073
					1606+106	1807+698	2200+420	2345-167

84% of MOJAVE source has broadband coverage of <u>radio</u>, <u>optical</u>, <u>X-ray</u> and <u>γ-ray</u>

Chang, Chin-Shin 張靖歆

Fermi meets Jansky, Bonn

Data Analysis

- Typical exposure: 5-10 ks of *Swift*/XRT obs., providing good X-ray spectra
- *Swift*/XRT spectra fitted by an <u>absorbed power-law</u> model with a lower-limit of NH value measured by the LAB survey (Kalberla et al. 2005, A&A 440, 775)

Data analysis

- A <u>polynomial model</u> is applied to all broadband SEDs (as a first approach)

Chang, Chin-Shin 張靖歆

Fermi meets Jansky, Bonn

Data analysis

- A <u>polynomial model</u> is applied to all broadband SEDs (as a first approach)

- We estimated the <u>peak positions of the synchrotron and high-</u> <u>energy</u> humps

Chang, Chin-Shin 張靖歆

Correlation study

Lister et al. 2009, ApJ 696, L22 Kovalev et al. 2009, ApJ 696,L17 Savolainen et al. 2010, A&A 512, A24 Pushkarev et al. 2010, submitted to A&A Boeck et al., this conf.

Radio (VLBI): Flux density Spectral index β_{app} Doppler factor Lorentz factor γ-ray:

Flux Luminosity Photon index

Chang, Chin-Shin 張靖歆

Fermi meets Jansky, Bonn

Correlation study

Chang, Chin-Shin 張靖歆

Fermi meets Jansky, Bonn

Fermi meets Jansky, Bonn

Preliminary

Variability Doppler factor: Hovatta et al. 2009, A&A 494, 527

Chang, Chin-Shin 張靖歆

Fermi meets Jansky, Bonn

Preliminary

Fermi meets Jansky, Bonn

Summary

- We have constructed a (quasi-)simultaneous broadband SED catalog for a radio-selected AGN sample of 135 sources
- We estimated the peak positions of the synchrotron and inverse Compton humps
- We are investigating possible correlations of
 - e.g. γ-ray luminosity Peak flux of IC hump

Next Steps

- Statistical tests will be performed to confirm our findings
- Variability study of broadband SED of individual sources
- Physical modeling of the broadband SEDs