

Recent multi-wavelength monitoring campaigns in the Fermi-GST era

Lars Fuhrmann MPIfR - Bonn

on behalf of the Fermi-LAT collaboration and many multi-wavelength collaborators !

Outline

- overview
- three examples:

The γ -ray/optical polarization angle event in 3C 279 PMN J0948+0022 & Narrow-line Seyfert 1 galaxies The early γ -ray flare of 3C 454.3 during 2008

Introduction

- Fermi/LAT: powerful "all-sky-monitor"
- first time: detailed studies of AGN properties at γ-ray energies
- *Fermi*/LAT's full capability: in combination with complementary ground+space-based, (quasi-) simultaneous Multi-Wavelength (MW) observations
- large collection of different MW data required ("single-dish", VLBI, polarization, spectral information) across cm/mm/sub-mm, IR/optical/UV, X-ray, TeV
- in combination: fundamental questions can be effectively addressed
- Fermi AGN group: ad-hoc & planned intensive MW campaigns since 2008 including MANY MW facilities

Participating MW facilities:

Radio:	
OVRO 40-m program	
F-GAMMA cm/mm/sub-mm pro EFF, IRAM PV, APEX	ogram:
GASP/WEBT collaboration radio UMRAO, Metsähovi, SMA, Mec Noto	o: licina,
RATAN-600, ATCA	
VLBI: MOJAVE, TANAMI, Bosto GHz, VLBA multi-λ ToO program EVN/LBA	on 43 m,
IR/optical: GASP/WEBT collabor (many telescopes), Kanata, ATC SMARTS, Stewart Observatory, WIRO, KVA, INAOEP, VLT/VISIE Palomar, Pomona, <i>Spitzer</i>	oration DM, , MDM, R,
X-ray: Swift, Suzaku, RXTE, Ch	andra
TeV: HESS, VERITAS	

Introduction

Fermi/LAT MW campaign publications

- since 2008: many sources target of MW campaigns
- often triggered due to flaring states
- first joined campaigns with TeV facilities such as HESS and VERITAS

Source	Reference
RGB J0710+591	Acciari, V. A., et al. 2010, ApJ, 715, L49
$5 \ \mathrm{FSRQs}$	Abdo, A. A., et al. 2010, ApJ, 716, 835
PKS 1424+240	Acciari, V. A., et al. 2010, ApJ, 708, L100
3C279	Abdo, A. A., et al. 2010, Nature, 463, 919
PKS 1502+106	Abdo, A. A., et al. 2010, ApJ, 710, 810
$\mathrm{NGC}1275$	Acciari, V. A., et al. 2009, ApJ, 706, L275,
	Abdo, A. A., et al. 2009, ApJ, 699, 31
3C454.3	Abdo, A. A., et al. 2009, ApJ, 699, 817
PKS 2155-304	Aharonian, F., et al. 2009, ApJ, 696, L150
PMN J0948+0022	Abdo, A. A., et al. 2009, ApJ, 707, 727,
	Abdo, A. A., et al. 2009, ApJ, 699, 976
PKS 1454-354	Abdo, A. A., et al. 2009, ApJ, 697, 934

Many in the pipeline, e.g.:

J0109+6134 (Abdo et al. 2010d) 3C 66a PKS 1510-089 Mrk 501 Mrk 421 AO 0235+164 3C 454.3

The γ -ray/optical polarization angle event in 3C 279

Insights into structure of quasar jets from γ-ray and optical polarimetric observations

Abdo et al. 2010, Nature, 463, 919

- after ~ 100 days of *Fermi/LAT* operations: FSRQ 3C 279 turned into active phase at γ-rays
- Fermi AGN team triggered MW campaign
- many telescopes involved
- into high state at ~ MJD 54780 for about 120 days
- double-peak structure with factor ~ 10 variations
- doubling time scales as short as 1 day

Observatory	Detector/Telescope (diam.)	Band
	Gamma-ray	
Fermi	LAT (survey mode)	> 200 MeV
	X-ray	
RXTE	PCA	3-10 keV
Swift	XRT	0.6 - 7 keV
U	Itra-Violet, Optical, Near-infra	ured
Abastumani, Georgia	(70 cm)	R
Calar Alto		R
Campo Imperatore, Italy	(110cm)	J, H, K
Crimean, Ukraine	ST-7 (70 cm)	R
Crimean, Ukraiine	ST-7, pol.(70cm)	R
Hiroshima, Japan	KANATA (150 cm)	V, J, Ks, polarization (V)
Kitt Peak, Arizona, USA	MDM (130 cm)	R
La Silla, Chile	GROND (220 cm)	g, r, i, z, J, H, K
L'Ampolla		R
Lowell (Perkins)	Perkins	R
Lulin, Taiwan	SLT (40 cm)	R
Roque, Canary Islands	KVA (35 cm)	R, polarization (no filter)
Roque, Canary Islands	LT (200 cm)	R, H
San Pedro Martir	(84 cm)	R
St. Petersburg, Russia	(40 cm)	R
Swift	UVOT (30 cm)	W2, M1, W1, U, B, V
	Radio	
Effelsburg	(100 m)	3, 5, 8, 10, 15, 23, 32 GHz
Mauna Kea USA	$SMA(8 \times 6 m)$	230 GHz, 345 GHz
Medicina, Italy	(32 m)	5, 8, 22 GHz
Metsahovi, Finland	KURP-GIX (14m)	37 GHz
Noto, Italy	(32 m)	43 GHz
Owens Valley, USA	OVRO (40 m)	15 GHz
UMRAO, USA	(26 m)	5, 8, 14 GHz

Contact authors: M. Hayashida & G. Madejski

The γ -ray/optical pol. angle event in 3C 279

- photon index about constant
- striking ~ 20 day event during second γ-ray flare around MJD 54880:
- associated with drop in optical polarization
- plus: dramatic change in optical EVPA by 208° (12°/day), before: ~ 50° (VLBI jet)
- γ-ray event produced in a single, coherent event, co-spacial with optical
- highly ordered magnetic fields
- single X-ray flare around MJD 54950 on similar time scales

The γ -ray/optical polarization angle event in 3C 279

• radio bands:

- cm/mm bands less strong variable
- no obvious strong, associated event
- but, also overall higher flux state
- sub-structure at mm-bands
- synchrotron self-absorption: size of emission zone: < 5 x 10¹⁶ cm, in agreement with shortest γ-ray variability

SMA, M. Gurwell

The γ -ray/optical polarization angle event in 3C 279

- gradual rotation of EVPA requires nonaxissymetric trajectory
- basically two models for outward propagation of the emission region
- both constrain distance from BH: ~ 5 orders of magnitude > than grav. radius
- at parsec scales, IC likely through torus IR or jet synchrotron photons
- isolated X-ray flare: one-zone emission models too simple

PMN J0948+0022 & Narrow-line Seyfert 1 galaxies

Fermi/LAT discovery of gamma-ray emission from a relativistic jet in the Narrow-Line Quasar PMN J0948+0022 **Abdo et al. 2009, ApJ, 699, 976**

- before *Fermi*/LAT: γ-ray emitting AGN are blazars and radio galaxies
- *Fermi*/LAT: LBAS confirmed extragalactic γ-ray sky dominated by those!

BUT:

first *Fermi*/LAT detection of a γ-ray emitting Narrow-line Seyfert 1 (NLS1) in 2008: PMN J0948+0022 (contact author: L. Foschini)

- NLS1:
 - Seyfert-like AGN, spiral host galaxies
 - e.g. permitted optical lines from BLR much narrower than in Seyfert 1 or blazars (FWHM(H β) < 2000 km s⁻¹); no intrinsic obscuring matter
 - large fraction radio-quiet (only ~ 7% radio-loud, Komossa et al. 2006)
 - radio jets in NLS1 ?

PMN J0948+0022 & Narrow-line Seyfert 1 galaxies

- answer promptly:
 - early MW follow-up and a triggered MW campaign (Abdo et al. 2009a, 2009b, Foschini et al. 2009)
- many MW facilities involved
- first averaged SED similar to ordinary blazars

Domain	Energy band/Filter /Frequency	Facility
Gamma-rays	0.1-10 GeV	Fermi/LAT
Hard X-rays	20-100 keV	Swift/BAT
X-rays	0.2-10 keV	Swift/XRT
Optical/UV	V,B,U,UVW1,UVM2,UVW2	Swift/UVOT
Optical	B, R	АТОМ
Optical/NIR	B, R, J	SMARTS/Yale
NIR	J, H, Ks	INAOEP
NIR	J, K	WIRO
Radio	15 GHz	OVRO
Radio	cm/mm, Polarization	Effelsberg
Radio	1-22 GHz	RATAN-600
Radio	15 GHz, Polarization	MOJAVE
Radio	1.66, 22.2 GHz	e-VLBI
Radio	37 GHz	Metsahovi

- double-humped SED with disk component in UV band
- m_{BH} upper limit: 1.5 x 10⁸ M_{solar}

PMN J0948+0022 & Narrow-line Seyfert 1 galaxies

- variability & SED modeling (averaged plus time-resolved) using Ghisellini & Tavecchio (2009)
- Synchro/SSC component plus EC component
- physical parameters: typically blazar-like
- jet power similar to those of blazars (intermediate between FSRQs and BL Lacs)

 $\log \nu [Hz]$

PMN J0948+0022 & Narrow-line Seyfert 1 galaxies

- presence of a relativistic jet from radio bands:
 - flux density & spectral variability/flare
 - equipartition Doppler factors of ~7
 - highly compact, unresolved 15 GHz core on pc-scales with size < 60 μ as, T_b = 1.0 x 10¹² K
 - VLBI core fractional linear polarization of 0.7%

 Typical signature of a relativistic jet

10

Frequency [GHz]

20

PMN J0948+0022 & Narrow-line Seyfert 1 galaxies

- In summary:
 - Fermi/LAT + MW observations: NLS1 new class of γ-ray AGN hosting a relativistic jet
 - further detections (now 4): emerging population of RL-NLS1 (Abdo et al. 2009)
 - SEDs similar to blazars
 - but, small BH masses (10^{6.7}-10^{8.2} M_☉); very high accretion rates (up to 90% Eddington)
 - optical: general different physical conditions spiral hosts
 - challenges the view that relativistic jets are typically hosted in elliptical galaxies

Early Fermi Gamma-ray Space Telescope Observations of the Quasar 3C 454.3 Abdo et al. 2009, ApJ, 699, 817

- well-known radio source, identified with an OVV quasar at z = 0.859
- detected by EGRET, AGILE
- very active (bright, rapidly variable) since 2000
- outburst detected in the early *Fermi*/LAT data, showing rapid flares with rise-times of ~ 3 days
- flare triggered a large multi-wavelength

campaign

Not a simple power law: broken power law with a break, $\Gamma_1 \sim 2.3$ to $\Gamma_2 \sim 3.5$ at $E_{br} \sim 2-2.5$ GeV

First observation of a spectral break in the spectrum of a high luminosity blazar above 100 MeV

intrinsic break in the energy distribution of the radiating particles? γγ-absorption? two IC-scattered component?

• extremely good frequency coverage

Band	Observatory	sampling
X-ray	Swift (XRT)	daily
IR/Optical/ UV	Spitzer,GASP/WEBT, ATOM, Palomar, Pomona, Kanata, UVOT	daily to ~ weekly/ monthly
Radio (cm/mm/ sub-mm)	Effelsberg, OVRO, UMRAO,Medicina, Noto, Metsähovi, IRAM 30m, APEX, SMA, VLBA	daily to ~ weekly/ monthly

- no spectral changes at γ-ray and X-rays
- no strong optical polarization/EVPA changes

Fermi/LAT and multi-wavelength observations of quasar 3C 454.3 during the 2008 outburst Abdo et al. in prep.

- similar variability pattern
- detailed time scale and cross-band analysis (SF, CCF, WL, PD)
- quasi-periodic pattern at all 3 bands with very similar start & stop times
- fast component (21d) at γ-ray/opt.
- fast "modulation" seen also at mm, but more prominent: 60d (also optical)
- CCF:
 - γ-ray/optical: strong correlation
 (~ 0 lag)
 - Opt./mm less strong correlation (60d comp.)
- hints of a connection between features seen even down to mm-bands

- similar variability pattern
- detailed time scale and cross-band analysis (SF, CCF, WL, PD)
- quasi-periodic pattern at all 3 bands with very similar start & stop times
- fast component (21d) at γ-ray/opt.
- fast "modulation" seen also at mm, but more prominent: 60d (also optical)
- CCF:
 - γ-ray/optical: strong correlation
 (~ 0 lag)
 - Opt./mm less strong correlation (60d comp.)
- hints of a connection between features seen even down to mm-bands

- VLBA: 3 epochs (Sept. 08 Oct. 08) ToO multifrequency observations (5, 8, 15, 23, 43 GHz):
 - ✓ 2 inner bright components (core + first jet comp.)
 - \checkmark variability from core region
 - ✓ inverted core spectrum resembles total single dish spectrum and provides quiescent spectrum

Relative Right Ascension (marcsec)

2008-09-02

2008-09-05 2008-10-02

100

VLBI core spectrum

100

• radio single-dish coverage

- detailed spectral evolution
- shock-in-jet model (Marscher & Gear 1985)
- synchrotron and adiabatic phase ~ ok! Compton phase? additional Doppler component or previous flare?

₽H20

32/37

0 L

8

Ĭ

- Doppler factors: D_{var} : ~ 3 9, D from B_{SA} and B_{eq} : ~ 3 4, D γ > ~ 8
- Simultaneous SEDs at high, medium & low states

Conclusions

- Fermi/LAT: powerful "all-sky-monitor"
- in combination with MW observations: powerful tool to study and attack "the important questions" in detail
- first MW studies/campaigns already provided deeper insights
- many ongoing/upcoming MW campaigns
- in the future: from detailed "MW single source studies" + (statistical) studies of large samples to

a more general picture