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Radio-gamma correlation & 
TeV-GeV relation 
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- Radio-gamma correlation is well established

- Details not clear:

1.  radio or gamma leads, if any; (gamma leads-Pushkarev)
2. OR radio starts before, but peaks after gamma

3.  is gamma generated within the radio-mm optically thick 
region or outside?

- TeV-GeV

- TeV and GeV AGNs are (half) different: TeVs are mostly HBLs, 
half of GeVs are FSRQs

- GeV variable on ~ hour, probably cannot do shorter due to 
low counts (TeV ~ minutes). 
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Doppler factor crisis in AGNs
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Henri & Sauge 2006

Natural resolution: separate radio and GeV-TeV sites:
-  in space (fast spine, slow sheath)  

- time/space (decelerating jets, Georganopoulos & Kazanaz 2003)
- space:  this work: accelerating jets

• Radiative modeling of TeV flares requires 

- Fast variability

- Compactness parameter 

- (I will mix up a bit TeV-GeV  data. At least both IC.)

•  Direct observations of superluminal  radio knots imply

- MOJAVE: blobs motion reflects underlying flow  (bidirectional motions, 
no inward moving features,  multiple blobs in the same jet  with the 
same speed,   correlations of jet speeds with other properties)

• Somewhat similarly (?)  GeV photons  in GRB 080916C -> Gamma ~2000. 

∆t → ∆t�/Γ2

τ → τ �/Γ6

δknot ≤ 10

δTeV ≥ 100
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AGN launching: large-scale
 B-fields
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- AGN (and GRB) jets are magnetically accelerated and 
collimated (Blandford&Znajek, Blandford&Payne).
- cs~ c, crossing time of SMBH ~ minutes-hours. 

- Relax to steady state

Observations indicate non-stationarity, blob ejection etc.
 Probably related to instabilities of the inner disk

- Clear disk-jet connection in galactic BHs
- Some indication in AGNs (3C 120)
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AGN launching: large-scale
 B-fields

4

- AGN (and GRB) jets are magnetically accelerated and 
collimated (Blandford&Znajek, Blandford&Payne).
- cs~ c, crossing time of SMBH ~ minutes-hours. 

- Relax to steady state

Observations indicate non-stationarity, blob ejection etc.
 Probably related to instabilities of the inner disk

- Clear disk-jet connection in galactic BHs
- Some indication in AGNs (3C 120)

What are the consequences of non-stationary jet injection?
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Acceleration: pressure- & 
magnetic-driven, Newtonian, 

Relativistic.
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Fluid, non-relativistic:
Stationary: 

Non-stationary 

cs,0

de Laval nozzle

vmax,statioanry =

�
2

γad − 1
cs,0 ∼ cs,0

vmax,non−stationary =
2

γad − 1
cs,0 > vmax,stationary

MHD, relativistic: 

There is enough energy to have

Yet in a stationary regime 

Γ ∼ σ

σ =
B2

4πρc2
, ΓA =

√
1 + σ

Γinf ∼ σ1/3
0
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In non-stationary magnetically-
driven expansion
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Γmax = 1 + 2σ

Leading edges of non-stationary outflows can 
accelerate to much higher Lorentz factors and may 
dominate highly boosted high energy emission.

Steady state: Γ ∼ σ1/3
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Relativistic Riemann problem
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Front of 
rarefaction wave

 

Initial vacuum 
interface

vacuumUndisturbed 
medium v=0 v

vRW
vvac

z=0

σ

Modern shock-capturing 
numerical schemes (Godunov) 
are based on Riemann 
invariants. Exact non-linear 
solutions are rare, needed for 
code testing.

Marti&Muller (1996) found J±

we found shape of characteristics

Exact, fully non-linear solution for 
Riemann problem (Riemann 
invariants and characteristics)

(∂t + β∂z)β = − (β∂t + ∂z)P

(E + ρ+ P )γ2

(∂t + β∂z)P = −(E + ρ+ P )γ2 (β∂t + ∂z)β

δβ = δ2/3η δ2/3A,0

δA =
δ2/3A,0

δ1/3η

η = z/t

δ =

�
1 + β

1− β
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Testing theory and codes
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Two (!) curves for density: 
analytical (Lyutikov) and 
simulations (Komissarov).

Codes can deal with high 
magnetization, high Lorentz 
factors, large density contrast.

σ = 30
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Testing theory and codes
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Two (!) curves for density: 
analytical (Lyutikov) and 
simulations (Komissarov).

Codes can deal with high 
magnetization, high Lorentz 
factors, large density contrast.
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corona

accretion 
disk

jet

BH

cs ∼
�

GM

r

At sufficiently large radii,

variations of launching proceed on time scales  shorter than the 
dynamical time scale across the jet,

rbreakout ≥
�

ξ

θj

�2/3

rBH = 2× 1016 cmM⊙,9ξ
2/3
2 θ−2/3

j,−1

Non-stationary jet injection in 
static corona

Dynamic time 
across the jet 

Variations in disk/
launching

tdyn ∼ rΘj/cs

tj ∼ ξ rBH/c

Tuesday, June 22, 2010

FmJ 2010



9

corona

accretion 
disk

jet

BH

cs ∼
�

GM

r

At sufficiently large radii,

variations of launching proceed on time scales  shorter than the 
dynamical time scale across the jet,

rbreakout ≥
�

ξ

θj

�2/3

rBH = 2× 1016 cmM⊙,9ξ
2/3
2 θ−2/3

j,−1

rbreakoutrbreakout

Non-stationary jet injection in 
static corona

Dynamic time 
across the jet 

Variations in disk/
launching

tdyn ∼ rΘj/cs

tj ∼ ξ rBH/c

Tuesday, June 22, 2010

FmJ 2010



9

corona

accretion 
disk

jet

BH

cs ∼
�

GM

r

At sufficiently large radii,

variations of launching proceed on time scales  shorter than the 
dynamical time scale across the jet,

rbreakout ≥
�

ξ

θj

�2/3

rBH = 2× 1016 cmM⊙,9ξ
2/3
2 θ−2/3

j,−1

rbreakoutrbreakout
rbreakout

Non-stationary jet injection in 
static corona

Dynamic time 
across the jet 

Variations in disk/
launching

tdyn ∼ rΘj/cs

tj ∼ ξ rBH/c

Tuesday, June 22, 2010

FmJ 2010



9

corona

accretion 
disk

jet

BH

cs ∼
�

GM

r

At sufficiently large radii,

variations of launching proceed on time scales  shorter than the 
dynamical time scale across the jet,

rbreakout ≥
�

ξ

θj

�2/3

rBH = 2× 1016 cmM⊙,9ξ
2/3
2 θ−2/3

j,−1

rbreakoutrbreakout
rbreakout

Non-stationary jet injection in 
static corona

Dynamic time 
across the jet 

Variations in disk/
launching

tdyn ∼ rΘj/cs

tj ∼ ξ rBH/c

Tuesday, June 22, 2010

FmJ 2010



TeV/GeV flares and radio blobs
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TeV and GeV emission in  blazars is produced in the leading expansion 
edge moving with Gamma ~100, while the observed velocities of the 
radio blobs  correspond to the bulk motion with Gamma ~10

Before breakout

After breakout:
leading edge
bulk: 

γ ∼ 4γwσ ∼ 100
γ ∼ 2γwσ

1/3 ∼ 10

γw =

�
L

ρexc3

�1/4

r−1/2 ∼ 10
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TeV/GeV flares and radio blobs
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TeV and GeV emission in  blazars is produced in the leading expansion 
edge moving with Gamma ~100, while the observed velocities of the 
radio blobs  correspond to the bulk motion with Gamma ~10

Before breakout

After breakout:
leading edge
bulk: 

γ ∼ 4γwσ ∼ 100
γ ∼ 2γwσ

1/3 ∼ 10

γw =

�
L

ρexc3

�1/4

r−1/2 ∼ 10 Can accommodate short 
variability and  compactness 

Radio blobs 
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Predicted correlations
• Cores are optically thick at rgamma, typically rc > rbreakout: 

• Jet breakout will occur while the jet is still optically thick in radio.  

• Gamma-rays correlate with radio leading by  ~ weeks

• Better correlated (shorter delay) at higher radio frequencies

• Acceleration at large r: avoid Compton drag near BH. 

∆tγ−R ∼ rcore/c

2γ2
w

∼ weeks−months

rcore ≈ 1.4pcζ2/3R L2/3
46 γ−1/3

w,1 ν−1
9

rbreakout ≥
�

ξ

θj

�2/3

rBH = 2× 1016 cmM⊙,9ξ
2/3
2 θ−2/3

j,−1

γ ∼ 4γwσ ∼ 100
γ ∼ 2γwσ

1/3 ∼ 10
Gev

R
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• Jet breakout will occur while the jet is still optically thick in radio.  
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• Better correlated (shorter delay) at higher radio frequencies

• Acceleration at large r: avoid Compton drag near BH. 
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Kinematically 
related
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Radio-gamma correlation
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Gamma-rays-radio 
correlation with ~ months 
delay (Pushkarev et al 2010), 
radio 15 GHz trailing.
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Morphologies

QSO 3C 279

HBL Mrk 421

Low Gamma, 
early merging,
smooth jets

High Gamma, 
late merging, 
knotty jet

•  Jet morphology: higher gamma blobs merge later (e.g. variable jets in 
FSRQ); low gamma: smooth jets in LBLs).

stacked

stacked
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Predicted correlations

Γ = 20

Γ = 40

•Fermi-detected have higher Gamma
• jets of gamma-ray-selected  AGNs are more aligned 
than those in radio-selected (but: mini-jets?)

• Gamma-ray  emission is more boosted than radio, 

shorter variability times 

Acceleration on 1-10 pc 
- observed? (Lobanov) 
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Conclusion
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• Non-stationary outflows can accelerate much more efficiently than 
stationary ones.

• Beaming in GeV-TeV is different from beaming in radio (prediction)

• gamma rays generated ~ 0.1 - 1 pc from  BH,  at blob leading edge, 
mostly inside optically thick region 

• The model is able to accommodate  both the  requirement of small 
optical depth for gamma-ray photons, short time-scale variability and 
slow speeds in radio

• Key prediction: radio-gamma delay,  confirmed by Fermi (?)

• We do not specify how emission is generated; Blandford: it does not 
matter, Doppler beaming dominates

• Exact non-linear solutions  to the Riemann problem can be used for 
code testing (and are cute)
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Mini-jets
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• Emission beamed in jet frame (Blandford & Lyutikov 
2003, Lyutikov 2006, Ghisellini et al. 2008,  Lazar et al. 

2009, Giannios et al. 2009, Narayan & Kumar 2009)
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• HST1 in M87: high r, short variability

• Pic A: knots (~kpc) vary on 1yr 
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10 100 1000
100

1000

Lyutikov 2006

Observed emission can be 
highly variable and with high 
efficiency (tapping into most of 
the proper volume)

Γeff = 2Γγrand

∆t ∼ c

R

1
8Γ2γ2

rand

γrand

Γ

- Spectrum is harder during flare (Burrows et al 2005) 
- Are flares becoming longer and softer as function of flare 
time?
- Can some  Shorts be “one spike Long”? (failed SN-type)
- Can explain optical -gamma correlations in 080319B? E.g. 
emitting “blobs” expand, killing both 

Also: Ghisellini et al. 2008,  Lazar et al. 2009, 
Giannios et al. 2009, Narayan & Kumar 2009

- Not fluid “turbulence”,

- RM & RT instabilities will 
produce vT<< c turbulence

γrand ∼
�

9/8 = 1.06

Turbulent reconnetion
(Lazarian & Vishniac)

- Relativistic reconnection: 
jets with
 (Lyutikov & Uzdenski 2004) 

γout ∼ σ � 1

Tuesday, June 22, 2010

FmJ 2010




