Radio flaring activity of 3C 345 and its connection to γ-ray emission

Frank Schinzel*

Andrei Lobanov & Anton Zensus

Max-Planck-Insitut für Radioastronomie, Bonn, Germany

Collaborators: S. Jorstad & A. Marscher (BU), G.B. Taylor (UNM), M. Villata (INAF, on behalf of GASP-WEBT)

*Member of the International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Universities of Bonn and Cologne; Affiliated graduate student of the Fermi/LAT collaboration.
The source: 3C 345

Classification: BLRG, highly variable/OVV blazar
(one of the best studied blazars)

Redshift: $z=0.593$ (Marziani et al., ApJS 1996)

Distance/Sizes: $D_L \approx 3.5$ Gpc, 6.6 pc/mas, $1 \frac{\text{mas}}{\text{year}} \rightarrow 34.5c$

in concordance with $H_0 = 71$ km s$^{-1}$ Mpc$^{-1}$ and $\Omega_\Lambda = 0.72$

Properties (from literature):

- one sided superluminal jet with apparent speeds $\beta_{\text{app}} \leq 20c$
- viewing angle to the line of sight: $\Theta = (2.6 - 6)\degree$
- Bulk Lorentz and Doppler factors: $\Gamma \approx 20; D \approx 8$
- Jet opening angle: $\alpha_{\text{app}} \approx 12.9\degree, \alpha_{\text{int}} \approx 1.2\degree$
- high variability across all wavelengths, from radio to X-rays with a long-term periodicity of 3.4-4 years
High energy emission

Known as prominent source up to X-ray energies, not in γ-rays (pre Fermi era).

X-ray emission dominated by the jet through inverse Compton has been concluded by Unwin et al. 1994, 1997.

Typical X-ray flux (3-10 keV): $(3 - 5) \cdot 10^{-12}$ erg cm$^{-2}$ s$^{-1}$

Note: During 2009 the nearby sources CLASS J1641+3935 and NRAO 512 were both a factor of 7-8 fainter at optical (18.5 Mag.) and X-ray wavelengths $(0.5 \cdot 10^{-12}$ erg cm$^{-2}$ s$^{-1}$) than 3C 345.
Revised EGRET catalogue (Casandjian & Grenier, 2008)

“Another noticeable new source is EGR J1642+3940 detected at 5.8σ rather close to 3C345. [...] A marginal detection was also achieved for period 3034 at a level of 2.1σ. It should be noted, however, that the small photon excess above 500 MeV was attributed to a flare from Mrk 501 by Kataoka et al. (1999) because the centroid was closer to the famous TeV source, so the association of EGR J1642+3940 with 3C345 is unclear.”
Optical vs \(\gamma\)-ray observations around Oct’ 2009 (ATel #2222 Larionov et al.; ATel #2226 Reyes & Cheung).

Raw Fermi/LAT counts map integrated over 20 months with radio positions of candidate sources and LAT error circles (large circle 11 months, smaller circle 20 months).
VLBA radio monitoring

A new cycle of enhanced nuclear activity of 3C 345 began early 2008 observable at all wavelengths.

Followed-up by dedicated VLBA observations (2009 - 2010) and observations as part of the BU blazar sample (Marscher et al.) in approx. monthly intervals:

- Schinzel et al.: 12 epochs; 10 hours each; 15, 24, and 43 GHz
- Marscher et al.: 14 epochs at 43 GHz

Data Reduction & Analysis:

- AIPS (Astronomical Image Processing System) – calibration
- Difmap – mapping and modelfitting

NRAO’s Very Long Baseline Array (VLBA)
Source structure at 43 GHz

Best representation of the brightness distribution of the core region was determined through optimization of the minimum χ^2 statistics and degrees of freedom.
Features apparently accelerate from 2-10c over a time period of 1.5 years and a distance of 0.3 mas (2 pc).
1. γ-ray events aligned with appearance of jet components (1,2).
2. Radio flare in the jet has γ-ray counterpart (flare II).
Long-term trends obtained by fitting cubic splines to the light curves of γ-rays, jet and core, rescaled to their respective mean flux values.

Core shows constant flux density, radio jet and γ-ray trends match.
Trend in optical

Similar trend seen in the optical, which implies that baseline optical emission is dominated by the jet.
The radio observations was only one day before the peak of the γ-ray flare (JD 2454980; May 28, 2009).

A peak in the optical R-band light curve (GASP) was observed two days before the peak of the γ-ray event.

The region around the jet feature Q9 is most likely the origin of this flare. With a distance of 0.20 ± 0.01 mas (1.3 pc) from the base of the jet.
Similar 3C 279 (Wehrle et al., 2001)

A similar event was observed in the radio jet of 3C 279 before (Wehrle et al., 2001). Unfortunately, EGRET did not observe simultaneously.
Conclusions

- \(\gamma\)-ray production is directly linked to structural and emission variabilities in the superluminal radio jet!
- Contribution from EC accretion disk photons can thus be ruled out. The 43 GHz radio core is about \((10^4 \,–\, 10^6) \, R_S\) from the SMBH.
- The observed \(\gamma\)-ray flux trend cannot arise from a single emission region. It is produced over a region of up to 40 pc (de-projected) in extent.
- Observations support SSC as the most likely mechanism for production of \(\gamma\)-rays in the source.
3C 345 is detected as γ-ray loud source by Fermi/LAT.
Observation of two new superluminal features producing γ-ray outbursts while passing through the 43 GHz VLBI core.
Brightening of the inner radio jet at 43 GHz, at a distance of up to 40 pc from the VLBI core, is associated with a strong simultaneous γ-ray flare & fast optical flare.
Evidence for a direct correlation between the radio and γ-ray emission represented by similar flux trends. A similar trend is observed at optical wavelengths.