MOJAVE-Fermi program: VLBI ejections in gamma-ray bright AGN jets Y. Y. Kovalev *Astro Space Center of Lebedev Physical Institute, Moscow*

Extragalactic Jets in the Fermi Gamma-Ray Sky as Seen by the MOJAVE VLBA Program

Fermi-Jy

June 22, 2010

The team

- . M. and H. Aller (Michigan University)
- . D. C. Homan (Denison University)
- . M. Kadler (Erlangen Uni, Bamberg Obs)
- . K. I. Kellermann (NRAO)
- · Y. Y. Kovalev (ASC Lebedev)
- . M. L. Lister, T. Hovatta (Purdue University)
- · A. P. Lobanov, A. B. Pushkarev, T. Savolainen,
 - J. A. Zensus (MPIfR)
- E. Ros (U. Valencia)

Outline

Why do we care about moments of parsec-scale ejections in gamma-ray bright AGN?

> MOJAVE program and VLBI ejections during the *Fermi* era

Expectations in a one year time

Object of our interest and motivation extragalactic jets emission across the electro-magnetic spectrum

Relativistic jet: synchrotron emission from radio up to X-rays. Some photons somewhere: Compton emission at high energies.

VLBI provides sub-parsec-scales resolution which help to locate the source of emission.

WikipediA

Abdo et al. (2009)

The 2 cm VLBA Survey / MOJAVE

http://www.physics.purdue.edu/astro/MOJAVE/

- Statistic studies of about 300 relativistic jets in AGN. Statistically complete sample of 135 AGN jets since 2002; 82 objects are in 1FGL.
- Support of *Fermi* since 2008 adding *Fermi* detected AGNs. Currently, the monitoring includes about 180 1FGL objects down to 200 mJy.

Recent pre-Fermi 2 cm MOJAVE monitoring results

- ✓ 135 sources in the sample
- ✓ About 500 robust components measured
- Ejection epochs are estimated for about 250 of them
- About 20 ejection epochs per (recent) year
- Typical accuracy: one/two/several months
- We need to wait some time (months/years) until VLBI ejection becomes resolved from the core and is observed for a high enough number of epochs (4-5 and more) to allow robust estimate of ejection epoch.

Lister et al. (2009)

Ejection epoch analysis: main goals

To address the following questions with high statistical significance:

- 1. Are VLBI ejections associated with gamma-ray flares in gamma-ray bright AGN jets? All of them?
- 2. What are the delays between the gamma-ray flares and the moment of ejection? This will allow better localization of the gamma-ray emitting region.

In addition:

Follow up on individual well identified gamma-ray flares / VLBI components.

"Robust" moment of ejection during the *Fermi* era: 1510-089

Fermi LAT Photon Flux (10⁻⁶ ph/cm²/s) 1510-089 4 2 0 2008.5 2009 2009.5 2010 See also Marscher et al. (2010) Time (yr)

Expected results

On the basis of our previous experience (Lister et al. 2009) as well as increased number of 1FGL sources monitored in MOJAVE and a relatively high observing cadence for the newly added gamma-ray bright jets, we expect to measure moments of ejections happening during the *Fermi* era for about 30 features in the monitored sample by 2011. This will allow us to perform statistical analysis over a high number of ejections versus three years long *Fermi* light curves.

Summary

✓ Moments of ejection of parsec-scale features in AGN jets are unique time stamps for associating VLBI and gamma-ray events as well as for locating the region of gamma-ray production.

✓ So far: one robust ejection epoch during *Fermi* era. Coincides with a huge gamma-ray flare.

✓ MOJAVE program will deliver a useful data set of ejection epochs for many gamma-ray bright AGN jets. Be patient. We monitor many 1FGL objects, but we need some time to get robust estimates of the moments of ejections.