Radio/gamma-ray time delay in the parsec-scale cores of AGN

A.B. Pushkarev^{1,2,3}, Y.Y. Kovalev^{4,1}, M.L. Lister⁵

¹Max-Planck-Institute für Radioastronomie ²Pulkovo Astronomical Observatory, ³Crimean Astrophysical Observatory, ⁴Astro Space Center, ⁵Purdue University

Fermi meets Jansky – AGN at Radio and Gamma-Rays Bonn, June 22, 2010

Motivation

Some fundamental questions remain open

- \succ HOW \rightarrow acceleration mechanisms
- \succ WHAT \rightarrow origin of gamma-ray variability
- ▶ WHERE → site of gamma-ray emission in AGN
- Important for constructing the models and also for planning multi-wavelengths campaigns

Introduction

- Comparison of long-term records of radio (10.7 GHz) and optical fluxes (Pomphrey et al. 1976) for a sample of 24 AGN → correlation is found for 13 sources; optical events preceding radio by intervals ranging from 0 to 14 months
- Analysis for internally consistent light curves for 18 AGN in the optical and radio (4.6-14.5 GHz) domains (Clements et al. 1995) → 9 sources exhibited positive correlation with a time lag 0-14 months
- ➢ Optical and radio (22-230 GHz) obs. (Tornikoski et al. 1994) for a sample of 22 AGN → correlation is found for 10 sources; in 6 sources no delay was detected
- A time delay study of individual cm- and mm-wave flare peaks for a sample of 55 sources (Hovatta et al. 2008) → delays ranged up to hundreds of days between 4.5 and 220 GHz
- Optical outbursts led 230 GHz flares by 15-50 days in 3C454.3 (Jorstad et al. 2008)
 A longer delay of ~10 months between optical and 37 GHz flux variations in 3C454.3 was reported by Volvach et al. 2008

Gamma-ray bright AGN in MOJAVE

- ~25% of MOJAVE-1 was in the 3 month list (75% in the 1FGL)
- 55 sources with TS > 100 positionally associated with bright radioloud blazars (Abdo et al. 2009; Kovalev 2009) have been incrementally added to the program
- MOJAVE-2 sample currently comprises 186 1FGL AGN

Gamma-ray bright AGN in MOJAVE

Sky distribution 186 1FGL AGN are currently being monitored with MOJAVE

Redshift distribution
168 (90%) with known z
dominated by quasars (73%)
high fraction of BL Lacs (21%)

Parsec-scale radio structure modelfitting

components, for which we fit				
flu	x [mJy]	r [mas]	θ [deg]	size [mas]
Core	1385	0.01	86.4	0.18
/ J5	51	0.51	24.3	0.09
J4	100	1.38	17.1	0.28
J3 <	20	1.90	18.0	0.38
J2	28	3.55	19.5	1.21
J1	36	5.46	8.9	1.70
50 40 30 N 20 10	Median	: 0.73	0.5 0.6 0.7 ore/S _{VLBA}	0.8 0.9 1

A limited number of circular/elliptical Gaussian

Data in use

Radio

- MOJAVE program (Lister et al. 2009) a long-term VLBA project
- Flux density at 15 GHz (core, total, jet = total core)
- 183 sources
- 564 VLBA images and corresponding modelfits

Gamma-ray

- > 1FGL
- 0.1-100 GeV photon flux
- ➢ monthly binned →
 11 measurements per source
- SNR = 3 cutoff used

Method

Construction the data sets: by selecting radio and gamma-ray measurements within an epoch difference window of 1 month, e.g. [-0.5, +0.5] months; shift the window by 0.5 months

Calculation correlation coefficients: Pearson's r and Kendall's tau

Estimation the errors: (i) swapping radio flux densities for a randomly selected pair of sources, (ii) calculating the Pearson's r and Kendall's tau, (iii) repeating (i) and (ii) 2000 times; estimating 95% (68%) CI

Radio/gamma-ray time delay

Observer's frame γ-ray leads radio Delay ranges from 1 to 8 m Smearing in delay due to different conditions in nucleus (М_{вн}, spin, M dot) in nearby ISM geometry (angle to LOS) wide range of redshifts Null-level statistics is taken from shuffling photon fluxes, keeping radio flux densities the same

Radio/gamma-ray time delay

Source frame

 Dividing radio/γ-ray epoch time difference by (1+z)

Peaks at ~1.2 months →
2.5 months in the observer's frame

 Other subpeaks may indicate longer delays in a smaller number of sources

Localization of the gamma-ray site

Core

- Pearson's r and Kendall's tau agree within the errors for the core and total flux densities, most probably, due to a strong core dominance with the median of $S_core/S_total = 0.73$
- Correlation for the jet flux density is weaker but significant
 - The correlation can be driven by the same Doppler factor in the jet and in the core (app. jet base)
 - Gamma-ray emission originates in the resolved jets?

Gamma-ray activity & radio flare in 3C 84

15 GHz MOJAVE I-map on 2008.65

Color: a difference image (2008.65–2007.67)

z = 0.0176 1 mas = 0.35 pc (~2 pc of de-projected dist.)

Abdo et al., 2009

Time lag as a result of syn. nuclear opacity

- A disturbance at a distance r_γ upstream to the apparent 15 GHz core position induces both γ-ray and radio emission
- A γ-ray photon escapes immediately, while radio emission is opaque
- It takes several months for a perturbation to propagate farther along the jet to become detectable at r_core, where τ~1

Travelled distance along the jet

Time lag as a result of syn. nuclear opacity

- Consider a source with a set of parameters typical for a LATdetected blazar
 - radio/ γ -ray time lag in a source frame $\Delta t \sim 1.2$ months
 - apparent jet speed β_{app} ~ 15 (Lister et al. 2009)
 - viewing angle θ ~ 3.6 deg (Pushkarev et al. 2009)

$$\Delta r = \frac{\beta_{\rm app} c \Delta t_{\rm R-\gamma}^{\rm sour}}{\sin \theta}$$

 $\Delta r \sim 7 \text{ pc (de-projected)}$ or ~ 0.9 pc (projected) or ~ 0.1 mas (z ~ 1)

- These estimates are consistent with the core radius at 15 GHz obtained from the frequency dependent core shift measurements (Lobanov 1998, Kovalev et al. 2008, O'Sullivan & Gabuzda 2009)
- VLBI observations at higher frequencies (e.g. 43 or 86 GHz) should register shorter delay or even quasi-simultaneous flux variations with γ-ray at least for some sources, and might even resolve the region of the jet where γ-ray emission is generated (e.g. 3C345, Schinzel et al. 2010, Jorstad et al. 2010)

Summary

- Correlation between gamma-ray photon flux and radio flux density is found to be highly significant
 - correlation results for core and total VLBA flux are indistinguishable
 - correlation is systematically weaker (but significant) if the jet flux is used
- A non-zero radio/gamma-ray delay is detected
 - ranges from 1 to 8 months in the observer's frame
 - peaks at ~1.2 months in the source's frame
 - most probably connected to the synchrotron opacity
 - radio is lagging gamma-ray (at their flare peaks)
- The region, where most of gamma-ray photons are produced, is found to be located within the compact opaque parsec-scale core
 - de-projected distance $(r_{core} r_{gamma}) \sim 7 \text{ pc or } 0.1 \text{ mas in a projected}$ angular scale, which is consistent with the typical core radius derived from the frequency dependent core shift measurements

