The Relation Between the Radio and Gamma-Ray Emission in Blazars from 15 GHz Monitoring with The OVRO 40 m Telescope and Fermi-GST observations

Walter Max-Moerbeck

In collaboration with ...
J. L. Richards, V. Pavlidou, T. J. Pearson, A.C.S. Readhead,
M.A. Stevenson, O. King, R. Reeves, K. Karkare,
E. Angelakis, L. Fuhrmann, J.A. Zensus,
S.E. Healey, R.W. Romani, M.S. Shaw
G. Cotter

Fermi meets Jansky – AGN in radio and gamma-rays
MPIfR - June 21, 2010
Overview

• **Problem:**
 – Where does the gamma-ray emission originate in blazars?
 • Various alternatives, e.g. Blandford and Levinson 1995, Marscher et al 2008

• **Our strategy:**
 – Study radio and gamma-ray light curves for a large number of sources
 • Monitoring 1500 sources
 • 454 detected by *Fermi*-GST on 1LAC “clean” sample
Introduction

Double peaked SEDs

Artist impression
http://imagine.gsfc.nasa.gov/
Introduction

Variability and linear polarization

3C 279 multi-wavelength campaign, Abdo et al. 2010, Nature 463, 919
Introduction:

Gamma-ray emission zone

- Different classes of models
 - Composition of the jet
 - Origin the inverse Compton soft photons
 - Distance from the central engine

Blandford and Levinson 1995
ApJ 441, 79
Introduction:
Gamma-ray emission zone

- Different classes of models
 - Composition of the jet
 - Origin the inverse Compton soft photons
 - Distance from the central engine

Marscher 2005, Mem. S.A. It 76, 13
Observing program: Radio monitoring

- OVRO 40-meter blazar monitoring
 - since July 2007
 - 1158 candidate gamma-ray blazars all CGRaBS objects with $\delta > -20^\circ$
 - CGRaBS, uniform and complete
 - Fermi detected sources are added, current sample ~ 1500 sources

Distribution of CGRaBS sources in Galactic coordinates
Red circles represent monitored blazars
Observing program: Radio monitoring

• System parameters
 – Dual-beam Dicke-switch system
 • FWHM 2.5', Beam separation 13'
 • 15 GHz, 3 GHz bandwidth
 • Tsys ≈ 50 K, Trx ≈ 30 K
 • Lose a factor of 2 in sensitivity compared to ideal receiver

• Observations
 – ~ two fluxes per week
 – ~ 5 mJy thermal noise, ~2% flux proportional uncertainty
 – Periodic relative calibration with noise diode
 – Absolute calibration with 3C286

The 40 m Telescope in action

Three full days of observations with the OVRO 40m Telescope video courtesy of Joey Richards
First results: Almost 3 years of observations

- Examples of gamma-ray/radio light curves for 3 month Fermi detected sources, 52 objects in total
First results:
Almost 3 years of observations

- Examples of gamma-ray/radio light curves for 3 month Fermi detected sources, 52 objects in total
First results:
Public data release

• Visit our website for more information

http://www.astro.caltech.edu/ovroblazars
First results:
Radio/gamma-ray correlation

- The apparent correlation is confirmed using simulations

\[
\begin{align*}
\text{Flux density correlation} \\
\text{Correlation significance}
\end{align*}
\]

\[
\begin{align*}
\text{Radio flux density} \\
15 \text{GHz Flux (Jansky)} & \quad 100 \text{MeV flux (GeV/cm}^2 \cdot \text{s} \cdot \text{GeV)} \\
\text{Gamma-ray flux density} & \\
\text{Monte-Carlo evaluated probability density} \\
\text{data} \\
r = 0.61 \\
P(\text{chance}) = 2 \times 10^{-4}
\end{align*}
\]
First results: Radio/gamma-ray time lags

- Examples cross-correlations. 3 month Fermi detections, using 11-months of Fermi data and 2 years of radio monitoring
- Significance evaluated using simulated data with a power-law PSD $\sim 1/f^\beta$:
 \[
 \beta_{\text{radio}} = 2.5, \quad \beta_{\text{gamma}} = 2.0
 \]
First results: Radio/gamma-ray time lags

- Examples cross-correlations. 3 month Fermi detections, using 11-months of Fermi data and 2 years of radio monitoring
- Significance evaluated using simulated data with a power-law PSD $\sim 1/f^{\beta}$

$$\beta_{\text{radio}} = 2.5, \quad \beta_{\text{gamma}} = 2.0$$
First results: Radio/gamma-ray time lags

- Examples cross-correlations. 3 month Fermi detections, using 11-months of Fermi data and 2 years of radio monitoring
- Significance evaluated using simulated data with a power-law PSD $\sim 1/f^{\beta}$

$\beta_{\text{radio}} = 2.5$, $\beta_{\text{gamma}} = 2.0$
First results:
Radio/gamma-ray time lags

• Examples cross-correlations. 3 month Fermi detections, using 11-months of Fermi data and 2 years of radio monitoring

• Significance evaluated using simulated data with a power-law PSD $\sim 1/f^\beta$ \[
\beta_{\text{radio}} = 2.5, \\
\beta_{\text{gamma}} = 2.0
\]
New receiver:

Polarization and better sensitivity

- New receiver will measure polarization
 - Polarization variability related to magnetic field structure on emission region
- Increases sensitivity
 - Both polarizations
 - Wider bandwidth
- Under construction
 - Radio frequency components design and acquisition
 - Digital backend
- Commissioning expected by end of the year
Summary

• First results:
 – Radio/gamma-ray flux density correlation is significant
 – Radio/gamma-ray time lags require longer duration light curves

• *Fermi*-GST provides a large sample of gamma-ray blazars with improved sensitivity and cadence. These are being observed by the OVRO 40-m Telescope plus all CGRaBS

• The correlated variability at these two bands will be used to constrain the location of the gamma-ray emission zone

• A new receiver which measures polarization is under development and commissioning is planned for the end of the year