Probing the Physics of Gamma-Ray Blazars
with Single-Dish Monitoring Data
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Outline

& Early results: the EGRET era

& Uses of Single Dish data In
understanding Fermi photon flux
data (light curves):

localization of the emission site
specification of the emission process
exploration of the role of shocks

& Future directions



THE GAMMA-RAY DATA: EGRET DETECTIONS

The 1st EGRET Catalogue TABLE 7

PosiTIVE DETECTIONS ON RADIO-LOUD QUASARS AND BL. LAC OBJECTS

Source ID and Characteristics pos Pos Flux® Vpe Photon Other

ID OVY BL Super Radio Flat Opt. p;ff© Uncert.d (106 cm'2s°1) Spectral Name
Lac Lum. Bright Radio® Poll (E>100 MeV) Index

0202+149 v v Vo240 40 0.26£0.06 21.0 2.540.1 4C+15.05

<0.5 26.0+28.0 PKS
0.26+0.05 Allsky

0208-512 0.41£0.12 9.0 PKS
1.1£0.07 10.0
0.55+0.13 13.5
0.70+0.05 Allsky

0234+285 0.1610.05 15.0 . 4C 28.07
<0.6 36.0-36.5 OD+258
<0.4 39.0
0.16£0.04 Allsky

0235+164 <0.3 15.0
0.8240.09 21.0
0.48+0.05 Allsky

0420-014 0.19£0.07 0.2-0.5
<0.14 1.0
<0.6 2.5
0.45£0.10 21.0
<0.3 29.0
0.19+0.04 Allsky

0446+112 0.17£0.06 0.2-0.5
<0.16 1.0
<0.6 2.5
1.04+0.19 36.0-36.5
<0.5 39.0
0.19£0.03 Allsky

0454-463 0.2940.07 6.0
<0.2 10.0
<0.2 17.0
<0.16 29.0
0.1330.03  Allsky

0528+134 1.1310.08 0.2-0.5
0.8110.07 1.0
0.5310.10 2.5
<0.6 36.0-36.5
<0.5 39.0
0.8010.04 Allsky

Fichtel et al. 1994



THE RADIO DATA: LIGHT CURVES
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COMPARISON: Is This Activity Related?

UMRAQ Feb 21,2007
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Statistical Evidence for Time-Correlated Activit
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NRAO 530: Detailed study of light curves
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EGRET+ SD + VLBI monitoring

Temporal association between component ejection and flaring

UMRAQC Feb 21, 2007

NRAO 530
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Linear Polarization as a Marker of Shocks in the Jet Flow
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Questions to be answered In the Fermi era

M Where within the jet* is the y-ray emission
produced? (localization of physical site using light curves)

M What is the emission mechanism? (character of
the variability from studies of the distribution of power; SEDS)

M What i1s the mechanism for the acceleration

of particles? (tests for the presence of shocks during
gamma-ray flaring)

M What special conditions are present In the jet

during broad band flaring? (identification of jet

properties during flaring and of changes in jet conditions from
flare to flare)

* Rapid variability in some sources suggests an emission site near the central engine
but see Marscher and Jorstad paper this meeting.



Current monitoring programs
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Evidence for correlated activity: Fermi +MOJAVE+ SD
Time-averaged data for 77 MOJAVE sources in 3-month bright AGN list
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Figure 1. Average Fermi LAT 100 MeV-1 GeV photon flux (Abdo etal. 2009b)
vs. quasi-simultaneous 15 GHz flux density. The filled circles represent total
VLBI flux density while open ones—single-dish flux density. The single-dish
flux densities are representative of the parsec-scale emission in these objects as
described in Section 2.

Kovalev et al. April 2009



Radio band — Gamma-ray Correlations

(OVRO versus Fermi flux density; time-averaged data for 49 sources with
known redshift in the 3 month bright AGN list
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Figure 7: Monte Carlo-estimated probability density
function for the correlation coefficient, r, between OVRO
15 GHz and Ferm: 100 MeV flux densities. Arrow
indicates measured value.
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Figure 6: OVRO 15 GHz flux density versus Fermi-LAT

100 MeV flux density.
Richards et al. Nov 2009




LIGHT CURVES: localization and emission process

Source Property Common Method

lags, leads (localization) Cross correlations

Time scale, noise process  Structure functions

Degree of variability FI, normalized excess
variance

Periodicity cross-wavelets

Length of data trains:
radio: up to 4 decades gamma-ray:. 2years



Cross-Correlations of Fermi & OVRO Light Curves
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Inherent Problems in Using Cross-Correlations of Light
Curves for Localization:

& Unambiguous identification of the SAME event is
difficult except when the light curve is
dominated by a single event (e.g. 0235+164).

& Self-absorption and opacity produce delays.

& A long’ data train is required to capture the full
range of behavior which can change from epoch
to epoch

& Changes in the parameters regulating the
emission as a function of waveband may
change with time



Correlation (DCF) Correlation (DCF)
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EGRET result for 3C 279
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Characterization of the Emission:

timescales & noise process from 1lst-order structure function analysis

0235+164

STRUCTURE FUNCTIONS

D(r) = ([S(t) - S(t+ )%

= 20%(1 — p(7)} for stationary noise
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Character of the Variability During the First 11 months
of Fermi Operation 08/04-2008 — 07/04/09

Fermi: E>300 MeV;
1 week average
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Results from Long-term UMRAQO Data:

quasi-periodic behavior (wavelets, cross-wavelets)

Crosse—wovelet for 02354164
Log, ,(Analyzing Period) = 0.31874

EI
5
. Independent analysis of 25
e 14 years of optical + radio data
N ; (Raiteri et al. 2001) gave
: e— 170 P=5.7+/-0.5. Next event did
1980 teon . w000 not follow expected pattern

Time

Radio band: Different methods identify different "periods’: all are yrs.



Are Similar Emission Properties Apparent?

M Slope of SF (noise process):0235+164 and 3C 454.3
dominated by a single event in BOTH bands in Fermi
era. In general: radio band b=1 (shot noise), In
gamma band b=0.0 (white noise) sometimes

My Characteristic times scales:
T= 2 years at cm band (from SF analysis).
T~ 7 weeks at gamma ray band (from DACF
lag times). different
& Periodicity:
quasi periodicity in several sources > year at

radio band. None yet at gamma ray band. OJ 287
best case in radio. don’t know yet




Characteristic SEDs: study of the relation of SSC and IC
components using quasi-simultaneous data (Aug-Oct 08)
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Evolution of the SED: 3C 279 During Activity
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Evolution of the SED During y-ray Flaring

Energy (V)
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Figure 2 | Energy spectrum from radio to y-ray band of 3C 279 at two
different epochs. The red points were taken between 54880 and 54885 M]D,
corresponding to the first five days of the sharp y-ray flare accompanying the
dramatic polarization change event (epoch 1). The blue points were taken
between 54950 and 54960 M]JD, around the peak of the isolated X-ray flare

Abdo et al. 2010
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SHOCKS: A Mechanism for Particle Acceleration

August 2008 event: 1502+106
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Example of Shock Signature in LP data
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Description of UMRAO Obligue Shock
Models (evolution of mf LP light curves)

« The models are determined essentially by two
free parameters: the shock compression and the
shock direction (forward or reverse). The latter
IS expected to be important for time delay
considerations.

+ An extreme relativistic equation of state iIs
assumed.

& A shock is introduced into the relativistic flow at
t=0 at an obligue angle to the flow direction.

+« Both simulated light curves and images are
generated for comparison with the data.



Simulation from Radiative Transfer Calculations

Representative Light Curves
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Simulated structure images
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Summary of Results Based on Combined
Fermi and Single Dish Monitoring Data

% Flux-flux correlations obtained using time-averaged quasi-
simultaneous data are highly significant. These argue for correlated
broadband activity.

% Cross-correlations of the light curves show a variety of behavior
patterns. Localization of the emitting region using these data must
account for a number of factors potentially affecting the cross-
correlation results.

% The association of rare, dramatic events in both bands can be
easily identified, but in general the emission processes are different
with respect to both noise process and characteristic time scale.

% Linear polarization monitoring verifies the presence of oblique
shocks during gamma-ray flaring. In combination with modeling, the
data can be used to identify jet conditions during gamma-ray flaring.



Future Work

M Deviations from the simple scenario of one
mechanism/one site must be addressed:

=>» rapid/hourly variability in 1510-089(Tavecchio et al.)
vs evidence for origin near core (e.g. Pushkarev)

=» differences in class properties (Leon-Tavares)

& More detailed investigation of the character of the
variability must be carried out as the Fermi data
accumulates; if changes occur in both the radio
and gamma-ray bands this would support the view
that the emissions are causally related.

N Isolation of the specific conditions giving rise to
gamma-ray flaring must be identified; these
Include searches for changes in jet properties from
event to event in the same source.
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