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1. Introduction

The broadband SEDs of blazars exhihit two broad spectral components. In
leptonic models the low-energy component is attributed to synchrotron radia-
tion of relativistic electrons whereas the high-energy component results from
synchroton-self Compton (SSC) interactions of the relativistic electrons, inverse
Compton upscattering the synchrotron photons.

FmJ 2010



Introduction

Linear synchroton . . .

Intrinsic optically . . .

Synchrotron and . . .

Comparison with . . .

Summary and . . .

The Fermi survey of blazars (Abdo et al. 2010) and multiwavelength monitoring
of the individual blazars PKS 0528+134 (Aharonian et al. 2005), 1ES 1121-232
(Aharonian et al. 2007b), PKS 0528+134 (Sambruna et al. 1997) and Mrk
421 (Fossati et al. 2008) have shown that basically two types of blazars exist:

(a) Synchrotron-dominated blazars where LS � LSSC , corresponding to |γ̇S | �
| ˙γSSC |,

(b) Compton-dominated böazars where LSSC � LS , corresponding to | ˙γSSC | �
|γ̇S |,

because of the identical Doppler boosting factors of synchrotron and SSC emis-
sion:

LS = mc2
∫
dV

∫ ∞
1

dγ n(γ)|γ̇S |,

LSSC = mc2
∫
dV

∫ ∞
1

dγ n(γ)| ˙γSSC | (1)

All physical quantities are calculated in a coordinate system comoving with the
radiation source.
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2. Linear synchroton and nonlinear SST electron
cooling

The competition between the instantaneous injection of ultrarelativistic elec-
trons (γ0 � 1) at the rate Q(γ, t) = q0δ(γ − γ0)δ(t) at time t = 0 and the
electron synchrotron energy losses is described by the time-dependent kinetic
equation for the volume-averaged relativistic electron population inside the ra-
diating source (Kardashev 1962):

∂n(γ, t)
∂t

− ∂

∂γ
[|γ̇|n(γ, t)] = q0δ(γ − γ0)δ(t) (2)

2.1. Linear synchrotron cooling only

With

|γ̇|S = D0γ
2, D0 =

4
3
cσT
mc2

UB = 1.29 · 10−9b2 s−1 (3)

the solution of this kinetic equation is (H denotes Heaviside step function)

nS(γ, γ0, t) = q0H[γ0 − γ]δ (γ − γS(t)) , γS(t) =
γ0

1 +D0γ0t
(4)

The half-life time, ts is

ts =
1

D0γ0
=

7.75 · 104

γ4b2
s (5)
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2.2. Combined linear synchrotron and nonlinear SST cooling

For combined synchrotron and SST cooling the kinetic equation (6) reads with
the substitution y = A0t

∂n(γ, t)
∂y

− ∂

∂γ

[
γ2n(γ, t)

(
K0 +

∫ ∞
0

dγ̃ γ̃2n(γ̃, t)
)]

= q0δ(γ − γ0)δ(y) (6)

where K0 = D0/A0. We set S = γ2n and use x = 1/γ as independent variable
to obtain

∂S

∂y
+
∂S

∂x

[
K0 +

∫ ∞
0

dx̃x̃−2S(x̃, y)
]

= q0δ(x− x0)δ(y) (7)

Now we define the implicit time variable T through

dT

dy
= U(y) = K0 +

∫ ∞
0

dxx−2S(x, y) (8)

Then Eq. (7) becomes

∂S

∂T
+
∂S

∂x
= q0δ(x− x0)δ(T ) (9)

which is solved by the method of characteristics (or double Laplace transform)
as
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S(x, T ) = q0δ(x− T − x0) (H[T ]−H[T − x]) (10)

The final step is then to calculate explicitely the time variable T as a function
of y. Use Eq. (10) in Eq. (8) to write

dT

dy
= K0 +

∫ ∞
0

dxx−2S(x, y) = K0 +
q0

(x0 + T )2
(11)

for x0 > 0 and T ≥ 0. The solution of Eq. (11) with the condition that T = 0
for y = 0 is

K0y = T −
√

q0
K0

[
arctan

(√
K0

q0
[x0 + T (y)]

)
− arctan

(√
K0

q0
x0

)]
(12)

Unfortunately, for K0 6= 0 this dependence y(T ) cannot be inverted to infer
the general dependence T (y). However, an approximate inversion is possible.

2.2.1. Injection parameter

The arguments of the arctan-function are always larger than α−1 = x0(K0/q0)1/2.
Therefore, we have to consider the two cases α ≥ 1 and α < 1, respectively,

where α = 46γ4N
1/2
50 /R15 = γ0/γB, γB = 217R15/N

1/2
50 . Obviously, the more

compact the source is, and the more electrons are injected, the smaller the
characteristic Lorentz factor γB is. If the injection Lorentz factor γ0 is higher

FmJ 2010



Introduction

Linear synchroton . . .

Intrinsic optically . . .

Synchrotron and . . .

Comparison with . . .

Summary and . . .

(smaller) than γB, the injection parameter α will be larger (smaller) than unity.
For a compact sources with a large number of injected relativistic electrons
the injection parameter α is much larger than unity. For small values of the
injection parameter α < 1, corresponding to γ0 < γB, the time evolution of
the electron distribution function is solely determined by the linear synchrotron
losses, whereas for large injection parameters α > 1, corresponding to γ0 > γB,
nonlinear SST losses determine the electron distribution function at early times.

2.2.2. Small injection energy γ0 < γB

In the case of small injection energies γ0 < γB the injection parameter α < 1 is
smaller than unity, so that the arguments of the arctan-functions in Eq. (12)
are always larger than unity. For all values of T and y Eq. (12) then simplifies
to

T (y) ' K0y (13)

In terms of y the solution (10) then reads S(x, x0, y) = q0H[x−x0]δ (x− x0 −K0y),
yielding

n(γ, γ0, t) =
q0
γ2
H[γ0 − γ]δ

(
γ−1 − γ−1

0 −D0t
)

= q0H[γ0 − γ]δ
(
γ − γ0

1 +D0γ0t

)
, (14)

which agrees with the standard linear synchrotron cooling solution (4).
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2.2.3. High injection energy γ0 > γB

In the case of high injection energies γ0 > γB the injection parameter α > 1 is
larger than unity. We rewrite Eq. (12) as

K0y + C1 = αx0

[
1 + T

x0

α
− arctan

(
1 + T

x0

α

)]
(15)

For small times 0 ≤ T ≤ Tc, where Tc = (α − 1)x0, we use arctan(x) '
x− (x3/3) to obtain

K0y1 + C1 '
x0

3α2

(
1 +

T

x0

)3

, (16)

and with T (y1 = 0) = 0

y1 =
(x0 + T )3

3q0
− x3

0

3q0
(17)

This solution is valid for T ≤ Tc, corresponding to

0 ≤ y ≤ yc =
x3

0

3q0

(
α3 − 1

)
=

x0

3α2K0
(α3 − 1) (18)
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For times T ≥ Tc or y ≥ yc the argument of the arctan-function in Eq. (15) is
large compared to unity, yielding the linear relation

y2 =
x0 + T

K0
− C4 (19)

The constant C4 is determined by the equality of the two solutions y1(Tc) =
y2(Tc) = yc at Tc providing

y2 =
x0 + T

K0
− 2q1/20

3K3/2
0

− x3
0

3q0
(20)

Figure 1: Comparison of exact solution y(T ) (full curve) with asymptotic
solution y1(T ) at small times (dashed curve) and asymptotic so-
lution y2(T ) at lates times (dotted curve).
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Both approximate solutions (17) and (20) can be inverted to yield

T1(y < yc) =
[
3q0y + x3

0

]1/3 − x0 = x0

[(
1 +

3α2K0y

x0

)1/3

− 1

]
(21)

and

T2(y ≥ yc) = x0

[
1

3α2

(
3α2K0y

x0
+ 1 + 2α3

)
− 1
]

(22)

We then find for small times

n1(γ, γ0, t < tc) = q0H[γ0 − γ]H[tc − t]δ
(
γ − γ0

(1 + 3q0γ3
0A0t)1/3

)
, (23)

which agrees with the nonlinear SST solution of Schlickeiser (2009). At late
times

n2(γ, γ0, t ≥ tc) = q0H[γB − γ]H[t− tc]δ

(
γ − γB

1+2α3

3α3 + γBK0A0t

)
, (24)

which is a modified linear cooling solution. Note that both solution show that
at time
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tc =
yc
A0

=
α3 − 1

3α3γBD0
' 1

3γBD0

=
2.6 · 108

γBb2
s =

1.2 · 106N
1/2
50

R15b2
s (25)

the electrons have cooled to the characteristic Lorentz factor γB.

2.2.4. Interlude

Summarizing this section: provided electrons are injected with Lorentz factors
higher than γB, they initially cool down to the characteristic Lorentz factor
γB by nonlinear SST-cooling until time tc. At later times they further cool
to lower energies according to the modified cooling solution (24). If the elec-
trons are injected with Lorentz factors smaller than γB they undergo only linear
synchrotron cooling at all energies with no influence of the SST cooling. The
characteristic Lorentz factor γB is only determined by the injection conditions,
whereas the time scale tc also depends on the magnetic field strength.
This different cooling behaviour for large and small injection energies affects
the synchrotron and SSC intensities and fluences which we investigate in the
next sections.
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3. Intrinsic optically thin synchrotron radiation
intensities and fluences

The optically thin synchrotron intensity n(γ, t) is given by

I(ε, t) = RjS(ε, t) =
R

4π

∫ ∞
0

dγ n(γ, t)pS(ε, γ), (26)

In order to collect enough photons, intensities are often averaged or integrated
over long enough time intervals. For rapidly varying photon intensities this cor-
responds to fractional fluences which are given by the time-integrated intensities
Ff (ε, tf ) =

∫ tf
0 dt I(ε, t). The total fluence spectra result in the limit tf →∞

F (ε) = Ff (ε, tf =∞) =
∫ ∞

0
dt I(ε, t) =

1
3A0q0γ3

0

∫ ∞
0

dτ I(ε, τ) (27)

For small injection energy (α� 1) we obtain

Fs(ε) ' F0S

{
c0
(
E0
ε

)1/2
for ε� E0,(

E0
ε

)
exp (−ε/E0) for ε� E0.

(28)

whereas for large (α� 1) we find
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Fh(ε) ' F0h


c0α

2
(
E0
ε

)1/2
for ε� E0/α

2,

c2
(
E0
ε

)3/2
for E0/α

2 � ε� E0,(
E0
ε

)
exp (−ε/E0) for ε� E0.

(29)

For the total fluence SED S(ε) = εF (ε) we then find in the two cases of small
(s) and high (h) injection energies

Ss(ε) = S0
α2

γ0

(
ε

E0

)1/2

exp (−ε/E0) (30)

and

Sh(ε) = S0
α2

γ0

(
ε

E0

)1/2 εB
ε+ εB

exp (−ε/E0) , (31)

with the constant S0 = 3c0mc2/32c1σT and the characteristic break energy

εB =
c2E0

c0α2
= 0.703

E0

α2
(32)

The ratio of peak values is given by

R =
Nh,peak

Ns,peak
' 0.97

αh
α2
s

(33)
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Figure 2: Total synchrotron fluence SED N(x) as a function of x = ε/E0

for high (αh = 100, full curve) and small (αs = 0.1, dashed curve)
injection conditions calculated for γ0 = 104.
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3.1. Summary of the differences

D1) In the high injection case the synchrotron SED peaks at a photon energy
which is a factor 2xB = 1.4α2

h = 1.4 · 10−4 smaller than the peak in the small
injection case.
D2) The high injection energy peak value decreases at small times t < αts/3
more rapidly than the small injection energy peak value.
D3) The high injection SED is a broken power law with spectral indices +0.5
below and −0.5 above the peak energy xB � 1, respectively, and it cuts-off
exponentially at photon energies x > 1. Below the peak energy xB the time of
maximum synchrotron intensity decreases as tmax ∝ ε−1/2, whereas above the
peak energy xB it decreases more rapidly as tmax ∝ ε−3/2 due to the severe
additional SST losses.
D4) The small injection SED is a single power law with spectral indices +0.5
below the peak energy 0.5, and it cuts-off exponentially at photon energies x >
1. Here the time of maximum synchrotron intensity decreases as tmax ∝ ε−1/2

at all energies x < 1 because in the small injection case the SST-losses do not
contribute.
These predicted differences for the total synchrotron fluence SED and the syn-
chrotron light curve behaviours provides a conclusive test for the presence of
high or low injection energy conditions in blazars.
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4. Synchrotron and SSC fluence SEDs from
numerical radiation code

In Figs. 3 and 4 we show the synchrotron and SSC SEDs calculated with
the numerical radiation code of Böttcher et al. (1997) using a magnetic field
strength b = 1 and an injection Lorentz factor γ0 = 104 for the high (αh = 100)
and small (αs = 0.1) injection case.

Both synchrotron SEDs are in remarkable agreement with the analytical SEDs
shown in Fig. 2. In particular, the numerical SEDs confirm all four predicted
differences listed in the last section. For orientation, we have plotted in both
figures the asymptotic analytical synchrotron spectra as dashed and dash-dotted
lines.
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Figure 3: Numerically calculated fractional and total synchrotron and SSC
fluence SEDs for high (αh = 100) injection conditions calculated
for γ0 = 104. Note that the SSC emission has been artificially
cut off at low frequencies as it would otherwise overwhelm the
high-energy end of the synchrotron emission.
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The radiation code also yields the SSC fluence SEDs. We note from Figs. 3 and
4 that for the high injection case the SSC SED has a much higher amplitude
than the synchrotron SED, whereas the opposite holds for the low injection
case. Moreover, both SSC SEDs peak at the same photon energy, although the
SSC peak value in the high injection case is a factor 2 · 107 larger than in the
small injection case.

Figure 4: Numerically calculated fractional and total synchrotron and SSC
fluence SEDs for small (αs = 0.1) injection conditions calculated
for γ0 = 104. The full curves show the total fluence SEDs. The
dashed lines show the analytical asymptotes.
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5. Comparison with observations and future work

Figure 5: Compton-dominated source 3C 279
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Figure 6: Synchrotron-dominated source PKS0851+202 from Fermi survey

Differences in the synchrotron fluence SEDs in agreement with predictions!
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5.1. Future work

• Analytical behavior of SSC fluence SEDs for small and large injection
parameter α (BSc thesis M. Mandelartz)

• Corresponding analysis for power law injection q ∝ γ−s, γ1 ≤ γ ≤ γ2

(PhD thesis M. Zacharias): no significant differences as compared to
monoenergetic injection because of rapid quenching of power-law.

• Meeting Jansky: influence of optically thickness on low-frequency syn-
chrotron intensity and fluence SEDs (BSc thesis V. Friedhoff)

FmJ 2010



Introduction

Linear synchroton . . .

Intrinsic optically . . .

Synchrotron and . . .

Comparison with . . .

Summary and . . .

6. Summary and conclusions

• The broadband SEDs of blazars exhihit two broad spectral components
which in leptonic emission models are attributed to synchrotron radiation
and SSC radiation of relativistic electrons. If the high-frequency SSC
component dominates over the low-frequency synchrotron component,
the inverse Compton SSC losses of electrons are at least equal or greater
than the synchrotron losses of electrons. The linear synchrotron cool-
ing, included standardly in radiation models of blazars, then has to be
supplemented by the SSC cooling.

• The SSC energy loss rate of electrons calculated in the Thomson limit
(SST cooling) exhibits nonlinear behaviour because it depends on an
energy integral of the actual electron spectrum, reflecting the dependence
of the energy density of the target synchrotron photons on the differential
electron energy spectrum. The dependence on the initial kinetic energy
of injected electrons is a collective effect completely different from the
linear synchrotron case.

• For the illustrative case of instantaneous injection of monoenergetic par-
ticles we solve the nonlinear kinetic equation for the intrinsic temporal
evolution of the relativistic particles under combined linear synchrotron
and nonlinear SST-cooling.
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• Qualitatively differenres for the light curves and SEDs resulting depending
on whether electron cooling is initially Compton dominated (high injection
energy parameter α) or it is always synchrotron dominated (low α). The
injection parameter parameter α = γ0/γB depends on the Lorentz factor
γ0 of injected electrons energy density of the initially injected relativistic
electrons and can be written as and the characteristic Lorentz factor
γB = 217R15N

−1/2
50 , fixed by the source radius R = 1015R15 cm and the

total number of instantaneously injected electrons N = 1050N50.

• In the low-α case, the resulting fluence spectrum exhibits a simple ex-
ponentially cut-off power-law behaviour, Sν ∝ ν1/2e−ν/ν0 . In contrast,
in the high-α case, we find a broken power-law with exponential cutoff,
parametrized in the form Sν ∝ ν1/2 νB

ν+νB
e−ν/ν0 . Based on our analysis

we propose the following interpretation of multiwavelength blazar SEDs:

• Blazars, where the γ-ray fluence is much larger than the synchrotron flu-
ence, are regarded as high injection energy sources. Here, the synchrotron
fluence should exhibit the symmetric broken power law behaviour around
the synchrotron peak energy that is a factor (αhγ0)2 smaller than the
SSC peak energy. Below and above νB the synchrotron light curve peak
times exhibit different frequency dependences tmax(ν < νB) ∝ ν−1/2 and
tmax(ν > νb) ∝ ν−3/2, respectively, resulting from the additional severe
SST-losses at ν > νB.
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• Blazars, where the γ-ray fluence is much smaller than the synchrotron
fluence, are regarded as small injection energy sources. Here, the syn-
chrotron fluence exhibits the single power law behaviour (D4) up to a
higher synchrotron peak energy that is a factor γ2

0 smaller than the SSC
peak energy. In this case the synchrotron light curve peak time exhibits
the standard linear synchrotron cooling decrease tmax(ν) ∝ ν−1/2 at all
frequencies.

• If the injection Lorentz factor γ0 and the size of the source are the same,
different values of the injection parameter α result from different total
numbers of instantaneously injected electrons. E.g., the high injection
case αh = 100 results for N50 = 4.7, whereas the low injection case
αs = 0.1 needs N50 = 4.7 · 10−6.

• These predictions of spectral behaviour with time and frequency provide
conclusive tests for the presence or absence of linear synchrotron cooling
or nonlinear SST cooling in flaring nonthermal sources.
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