Mark 5C VLBI Data System

Alan Whitney Chet Ruszczyk Kevin Dudevoir *MIT Haystack Observatory*

Walter Brisken Jon Romney National Radio Astronomy Observatory

> 17 September 2007 e-VLBI Workshop MPI Bonn, Germany

Mark 5 Data Acquisition System (Mark 5A/B/B+/C all look the same)

Mark 5A introduced in 2002, Mark 5B in 2005, Mark 5B+ in 2006

Mark 5A Status

- <u>Direct plug-compatible replacement for 64-track Mark4 or VLBA tape</u> <u>drives</u>
- 1024 Mbps maximum record/playback data rate
- ~150 Mark 5A units deployed to stations and correlators
- ~1300 Mark 5A '8-pack' disk modules deployed (>2 PB of storage!); growing rapidly!
- 1 Gbps experiments are now routine for both geodesy and astronomy
- Correlator efficiency has improved by factor of ~2 over tape!

Development support 2001-2004 from Mark 5 development consortium – NASA, NRAO, USNO, MPI, BKG, EVN, KVN, JPL

Mark 5B Status

- <u>Compatible with VSI-H specification</u>
- 1024 Mbps record/playback
- Requires VSI-H data source (dBBC, DBE1, ADSn000, VSI4, etc)
- Same chassis and disk modules as Mark 5A
- Station Unit capabilities for connection to Mark 4 correlators is built-in
- Westford and Badary stations are now full-time Mark 5B; Parkes will soon join
- ~30 Mk5A-to-Mk5B upgrade kits have been distributed
- Haystack, MPI and USNO correlators support Mark 5B playback
- JIVE supports playback of Mark 5B recordings on Mark 5A+; working on Mark 5B support

Mark 5B+ Status

- <u>Compatible with VSI-H specification</u>
- Same as Mark 5B, except 2048 Mbps max record; 1024 Mbps playback
- Requires upgraded StreamStor disk interface card ("Amazon")
- Playback on Mark 5B or 5B+ (2048 Mbps plays back at 1024 Mbps max)
- Playback on Mark 5A+ not supported for 2048 Mbps recordings
- Available as standalone or upgrade to Mark 5B from Conduant Corp
- Mark 5B+ is operational and has been used in a number of successful experiments, including a large 3-station mm-VLBI experiment in April 2007 recording at 4 Gbps per station (two Mark 5B+s per station)

Mark 5C (under development)

- Input data on 10 Gigabit Ethernet (OSI Layer 2 or higher)
- 4096 Mbps max data rate to two standard Mark 5 disk modules
- Record through SS 10GigE interface
 - Requires new 10GigE daughter board for Amazon (under development); no separate "I/O board", unlike Mk5A/B/B+
- Playback will be through host computer as standard Linux data file*
 - -Natural for software correlators and e-VLBI
 - -Goal to replay data at full rate
- Prototype expected by ~early/mid 2008

*Conduant may provide playback path through Amazon card as well, but not mandated

Mark 5 Roadmap for Recording

Mark 5 Roadmap for Playback

Generalized 10GigE Data Distribution Concept

Mark 5C design basics

- Mark 5C is basically a 'dumb' asynchronous Ethernet packet recorder that simply records the payload of each Ethernet packet which it receives
- Will work with a 'transmit only' data source (i.e. no handshaking required
- User options will exist to make Mark 5C a bit 'smarter':
 - Ignore higher-level OSI content and other data not to be recorded
 - Monitor a user-generated Packet Serial Number to
 - Detect missing or bad packets and take certain actions
 - Prevent recording of certain marked packets
- Data source is responsible for creating Ethernet packet, including time-tagging and data-formatting
- A draft 'VSI-G' packet specification has been developed (but Mk5C itself doesn't really care):
 - One freq channel per Ethernet packet
 - Supports an arbitrary # of channels
 - (i.e. not constrained to 2**n channels, unlike Mk5A/B/B+)

Ethernet Packet Structure

Rule: All packets must have same length within a single scan.

Mark 5C VLBI Data Payload

- Composed of (optional) Data Frame Header followed by Data Frame
- Data Frame Header may be of arbitrary length (up to ~9000 bytes), but must be multiple of 8 bytes
- All data in Data Frame are recorded

Packet Sequence Number

- VLBI Data Payload may contain a 32-bit 'Packet Sequence Number' (PSN) generated by data source
- May be either in Data Frame Header or Data Frame
- If PSN is to be monitored by Mark 5C, packet PSN must be generated in strict integer order
- Mark 5C may be instructed to monitor PSN to:
 - 1. Monitor for missing or bad packets and replace recorded Data Frame with user-defined fill pattern (mostly for Mk5B compatibility mode)
 - 2. Re-order packets arriving out of order (within limits)
 - 3. Mark a Data Frame as invalid to prevent it from being recorded (only for standard Mark 5C mode)
- PSN may be embedded either in Data Frame Header or Data Frame itself (will be recorded if in Data Frame)

Mark 5C Data Frame Header format

	Bit 31	23		Bit 0		
Word 0	10 Sync word (0xdec0de5c)					
Word 1	ID	Ι	Data Frame # within second			
Word 2	Integer seconds since 00UT 1 Jan 1990					
Word 3	Unassigned					

- Must be integral number of Data Frames per second
- First sample in Data Frame number zero must correspond to second tick
- Mark 5C data <u>may be discontinuous in time</u>, but must be monotonic in time; useful for pulsars, burst-mode mm-VLBI, etc
- 00UT 1 Jan 1990 is standard reference time for RTP data streams used by VSI-E
- 'Unassigned' may be used for Packet Serial Number
- 'I' indicates data in Data Frame is 'invalid'
- Format is almost same as Mark 5B disk frame header format

Mark 5C Data-Frame data format

- Each Data Frame contains samples from one freq channel
- Multi-bit sampling is supported
- Bits within each sample are adjacent in Data Frame word; LSB in lower bit number

1-bit/sample data word format

Bit 31									Bit						
⁰ 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

2 bits/sample data word format

Bit 3	1									Bit
$ \begin{bmatrix} 0 \\ xx \end{bmatrix} $	9	8	7	6	5	4	3	2	1	0

3 bits/sample data word format. 'xx' indicates unused bits

Bit 3	51							Bit
0	7	6	5	4	3	2	1	0

4 bits/sample data word format

Mark 5B emulation mode

- Goal is to create disk in format which can be played back on Mark 5B DOM (but will not play back on Mark 5A+)
- Mark 5B disk frame is 10016 bytes, too long for single Ethernet packet, so data source must create Mark 5B disk frame as two adjacent packets, each 5008 bytes long
- Sample coding same as Mark 5B (VLBA coding)

	Bit 31 28	27	15	Bit 0					
Word 0	Sync word								
Word 1	Years from 2000	User-specified data	Т	Frame# within second (starting at 0)					
Word 2	VLBA BCD Time Code Word 1 ('JJJSSSSS')								
Word 3		VLBA BCD Time Code Word 2 ('.SSSS' plus 16-bit CRCC)							

Mark 5B emulation Disk Frame Header format

(shaded parameters are created by Mark 5B, but not needed for Mk5B emulation mode)

Mark 5C Sample coding

Fixed-point two's-complement of desired number of bits

2-bit/sample example

<u>Voltage level</u>	Sample code
> +threshold	01
0 to +threshold	00
0 to -threshold	11
< threshold	10

Mark 5C setup parameters

- List of valid MAC source addresses (to filter out spurious packets)
- Length of MAC Client Data; option to ignore packets of wrong length
- Byte offset to beginning VLBI Data Payload
- PSN monitoring mode
 - 0 off
 - 1 write replacement fill pattern for missing or bad packets; primarily for Mark 5B emulation mode
 - 2 do not write packets tagged as 'Invalid'
- Byte offset to PSN (if PSN monitoring is enabled)

10 GigE data sources

- Two design approaches are currently being pursued:
 - 1. 'dBBC' (EVN)
 - VSI-E to 10GigE converter being developed
 - 2. DBE2/VDBE (Haystack/NRAO/Berkeley/South Africa collaboration)
 - Based on next-generation iBOB board ('iBOB2'); ~\$1K each
 - Haystack developing PFB app; two 1-GHz IFs per iBOB2 8 Gbps/ iBOB2; two iBOB2s packaged in single chassis – 16 Gbps aggregate
 - NRAO developing 'VDBE' app; similar to dBBC; plan to outfit VLBA with VDBE and Mark 5C for 4Gbps operation by sometime summer 2008.

iBob1/DBE1

Sampler boards

(two iBOB1 bds per chassis)

iBOB1

DBE1 vs DBE1 with no phase adjustments whatever

RMS phase across frequency channels:

RMS: 2.5 deg

Theor: 1.0 deg

Comparable to best we've seen even with 'manual' adjustments to embedded phase-cal

Mark 5 Upgrade Costs

Target Existing	Mk5A	Mk5B (requires VSI-H data source)	Mk5B+	Mk5C (not yet available; rough estimates)
0	Unavailable	\$20.8K	~\$22.3K	\$20-25K
Mk5A	-	~\$3.5K (Mk5B I/O)	~\$13K (Amazon plus Mk5B I/O)	Est. \$12-14K (Amazon plus 10GigE DB)
Mk5B	-	-	~\$9.6K (Amazon)	Est. \$12-14K (Amazon plus 10GigE DB)
Mk5B+	_	_	-	Est. \$2-4K (10GigE DB)

Note: Costs do not include cost of creating data source

Disk-Media Status

- Hard disk price vs capacity/performance continues to drop
 - Now below ~\$0.30/GB and continues to drop (Mark 4/VLBA tape is ~\$2.00/GB)
- 500 GB disks are commonly used Two 8-packs of 500GB disks comparable to ~16 VLBA/Mark 4 tapes
- 750 GB disks Two 8-packs of 750GB disks comparable to ~24 VLBA/Mark 4 tapes; ~26 hours @ 1 Gbps unattended!
- 1 TB disks two 8-packs will sustain 4 Gbps for ~9 hours

Disk Price Timeline

SATA disk module

- Now available from Conduant
- Interchangeable with PATA disk module in Mark 5A/A+/B/B+/C
- New mechanical design allows very easy access to insert/remove individual disks; increased module stiffness for better mechanical stability

Summary

- Mark 5C is first of Mark 5 series to adopt industry-standard 10GigE data interface
- Will be able to take advantage of standard commercial 10GigE switches to re-organize and re-route data as desired
- 10GigE is natural interface to software correlator systems
- Estimated upgrade cost from Mark 5A or Mark 5B: ~\$12-14K
- Estimated upgrade cost from Mark 5B+: ~\$2-4K
- Expect first prototype Mark 5C systems in early/mid 2008

Questions?