Advancing spacecraft Doppler and interferometric data processing techniques for planetary science

Dmitry A. Duev

on behalf of the PRIDE team

California Institute of Technology

Overview

- PRIDE overview, dataflow and processing pipeline
- PRIDE observations of ESA's MarsExpress
 Phobos fly-by
- Conclusions and outlook

Planetary Radio Interferometry and Doppler Experiments (PRIDE)

PRIDE: a multi-purpose, multi-disciplinary enhancement of mission science return, based on Doppler tracking and phase-referencing VLBI technology and science

(more on PRIDE – L.Gurvits, later today)

Broadband correlation

SFXC: European VLBI Network's software correlator at JIVE

- FX software correlator
- Data formats: Mk4, VLBA, Mk5B, VDIF
- Delay models: far-, near-field, space VLBI
- WOLA: Hann, Hamming, cos, rect
- Pulsar binning, gating
- Multiple phase-centers
- Mixed bandwidth correlation
- VEX driven, JSON config file
- Implemented using MPI

Keimpema et al. 2015, Exp. Astron.

Near-field delay model

Imaging and uv-coverage for near-field VLBI

Van Cittert – Zernike theorem:

$$I_t(l,m) = \int S(u,v) \cdot V(u,v) \cdot \Re(e^{-2\pi i \cdot (ul+vm)}) \, \mathrm{d}u \, \mathrm{d}v \Big|_t$$

Traditional «uv»-projections of baselines

Elements of the Jacobian for the near-field VLBI case

$$J_{ij}|_{t} = \begin{pmatrix} \frac{\partial(\tau_{1} - \tau_{2})}{\partial\varphi} & \frac{\partial(\tau_{1} - \tau_{2})}{\partial\theta} \\ \vdots & \vdots \\ \frac{\partial(\tau_{1} - \tau_{N})}{\partial\varphi} & \frac{\partial(\tau_{1} - \tau_{N})}{\partial\theta} \\ \vdots & \vdots \\ \frac{\partial(\tau_{N-1} - \tau_{N})}{\partial\varphi} & \frac{\partial(\tau_{N-1} - \tau_{N})}{\partial\theta} \end{pmatrix}$$

Spacecraft imaging and state vector estimation

$$\overrightarrow{\Delta\phi} \Big|_{t} = \left(J_{ij} \cdot \overrightarrow{\Delta\alpha}\right) \Big|_{t} - \cdots \text{measurement equation}$$

$$\overrightarrow{\Delta\phi} = \begin{pmatrix} \phi_{12} \\ \vdots \\ \phi_{1N} \\ \vdots \\ \phi_{N-1,N} \end{pmatrix}, \quad \overrightarrow{\Delta\alpha} = \begin{pmatrix} \Delta\phi \\ \Delta\theta \end{pmatrix} - \cdots \text{differential phases}$$

$$- \text{ vector of corrections}$$

To get corrections to the S/C a priori lateral position, solve measurement equation for $\Delta\alpha$

ESA's Mars Express Phobos fly-by

Duev et al. 2016, A&A

Data processing pipeline

MEX spectrum

Averaged amplitude spectrum after applying the Doppler phase correction in arbitrary units, $2^{14} =$ 16384 points spectral resolution, baseline T6-Sv, scan 209 (top) and 191 (bottom). Only the carrier line was present in the spectrum in the second case, as was the case for ~ 50% of the time during GR035. The spectral mask is shown in orange dots.

Doppler observables

Doppler phase correction is applied to spacecraft signal to avoid frequency smearing

Doppler phase correction

Without phase correction

With phase correction

Zoom into the carrier line without (left panel) and with the Doppler phase correction (right panel). 10 sec integration time, 2¹⁵ = 32768 points spectral resolution, baseline Hh-Ww, scan 135. 23:22 – 23:24, December 28, 2013.

Spectrum filtration and compression

Measuring position: imaging approach

ESA's Mars Express Phobos fly-by

Measuring position: 'geodetic' approach

ESA's Mars Express Phobos fly-by

Displacements from the a priori lateral position of MEX as a function of time, measured using the imaging approach. Displacements in Right Ascension (mas) are shown in blue, in Declination (mas) – in red. 2-minute integration time; net time 'on target' ~ 5.5h. December 28-29, 2013.

Conclusion and outlook

- Lateral position and radial Doppler of MEX spacecraft measurement precision: 50 m and 30 µm/s, respectively
- Offsets in RA and Dec must be further investigated
- PRIDE for ESA's JUICE mission