Co-location on the Ground and in the Space

Jan Kodet¹, Ulrich Schreiber¹, Alexander Neidhardt¹, Johann Eckl², Günther Herold², Gerhard Kronschnabl², Christian Plötz², Swetlana Mähler², Torben Schüler², Thomas Klügel², Stefan Riepl², A. Hellerschmied³

First International Workshop on VLBI Observations of Near-field Targets

October 2016, Institute of Geodesy and Geoinformation, University of Bonn,

Bonn, Germany

¹Technical University Munich, Geodetic Observatory Wettzell

²Federal Agency of Cartography and Geodesy, Geodetic Observatory Wettzell

³Vienna University of Technology, Institute of Geodesy and Geophysics

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

Federal Agency for Cartography and Geodesy

GNSS Satellites Observations Using VLBI

- Co-location in space
- Improvements of local ties and technique-specific effects (e.g. calibration of antennas)
- Combining kinematic and dynamical reference frames
- Get GNSS orbital parameters in the International Celestial Reference Frame

GNSS Satellites Observations Using VLBI

RT Wettzell S-Band Receiver Upgrade

- S band feed disables to observe L band quasars
- pCal can be used to estimate group delay difference (S - L band)

Power supply

5MHz IN; S-LNA IN; IF band OUT

Observation of GNSS using TWIN1

Observation of GNSS using RTW and TWIN

- Scheduling was implemented to VieVS and first experiment proofed tracking possibility by RTW and TWIN1 + GNSS antenna
- Campaign of 3 small experiments focused on Glonass during April 2016
- Data are waiting for correlation

Conclusions VLBI GNSS observations

- RTW is capable to track L1 GNSS signal
 - Proved in several experiments (JIVE, Wettzell Onsala baseline, R. Haas)
 - Hardware limitations caused by large attenuation of L band in S band feed
- TWIN 1 is capable to track L1 and L2 GNSS signals using GNSS antenna installed on the roof of TWIN control room
- TWIN 2 has broad band feed working from ~1 GHz, tracking was not tested
- Scheduling was implemented to VieVS

Common Clock for Space Geodetic Techniques

Using two or more measurement systems of the same technique with a common clock provides equal delays in the time regime if all systematic biases are correctly established. The illustration shows the case for SLR on the left and VLBI on the right side.

Multi-Technique Ground Target Construction

Multi-Technique Ground Target

Multi-Technique Ground Target

Multi-Technique Ground Target GPS Solution

Multi-Technique Ground Target Calibration with SLR (SOSW)

Multi-Technique Ground Target VLBI Experiments $\cos(\omega_i t + \varphi_2)$ $\cos(\omega_i t + \varphi_1)$ $\cos(\omega_k t + \varphi_{I1} + \tau_{c1})$ $\cos(\omega_k t + \varphi_{I2} + \tau_{c2})$ τ_{l1} τ_{c1} τ_{I2} τ_{c2} ADC ADC τ_{cUT} EFOS18 EFOS60 TWOTT

Multi-Technique Ground Target RTW - TWIN 1 all known delays distracted

Multi-Technique Ground Target RTW - TWIN 1 all known delays distracted

Conclusion

- The experiment proved that these technique can work and is repeatable
- For geodetic application several changes must be considered