VLBI simulations to GRASP-like satellites at GFZ

Susanne Glaser¹, James M. Anderson², Tobias Nilsson², Georg Beyerle², Li Liu², Robert Heinkelmann², Harald Schuh^{1,2}

¹Technische Universität Berlin, ²GFZ German Research Centre for Geosciences

First International Workshop on VLBI Observations of Near-field Targets

Bonn, October 5, 2016

VLBI Sim Team @ GFZ

Introduction	Simulations	Error Analysis	Conclusions	References
O	00000000000	000000	O	
Outline				

1 Introduction

- 2 Simulations with VieVS@GFZ
 - Data
 - Strategy
 - Results
- 3 Error Analysis
 - Data
 - Strategy
 - Results

Introduction	Simulations	Error Analysis	Conclusions	References
O	00000000000	000000	O	
Outline				

- 2 Simulations with VieVS@GFZ
- **3** Error Analysis
- 4 Conclusions

Introduction •	Simulations 000000000000	Error Analysis 000000	Conclusions O	References
Introduction				
Motivation				

• Scientific goal: Meeting the requirements on a global TRF with an accuracy of 1 mm and a stability of 0.1 mm/yr

Introduction •	Simulations 000000000000	Error Analysis 000000	Conclusions O	References
Introduction				
Motivation				

- Scientific goal: Meeting the requirements on a global TRF with an accuracy of 1 mm and a stability of 0.1 mm/yr
- GRASP proposal submitted to NASA's "Earth Venture Mission-2 Opportunity" in December 2015 (Bar-Sever et al., 2009, 2015)
- E-GRASP/Eratosthenes proposal submitted to ESA's "Earth Explorer Opportunity Mission EE-9" in June 2016 (Biancale, 2016)

Introduction	Simulations	Error Analysis	Conclusions	References
Introduction				
Motivation				

- Scientific goal: Meeting the requirements on a global TRF with an accuracy of 1 mm and a stability of 0.1 mm/yr
- GRASP proposal submitted to NASA's "Earth Venture Mission-2 Opportunity" in December 2015 (Bar-Sever et al., 2009, 2015)
- E-GRASP/Eratosthenes proposal submitted to ESA's "Earth Explorer Opportunity Mission EE-9" in June 2016 (Biancale, 2016)
- Simulation studies necessary as a "Proof of Concept"

Introduction	Simulations 000000000000	Error Analysis 000000	Conclusions O	References
Introduction				
Motivation				

- Scientific goal: Meeting the requirements on a global TRF with an accuracy of 1 mm and a stability of 0.1 mm/yr
- GRASP proposal submitted to NASA's "Earth Venture Mission-2 Opportunity" in December 2015 (Bar-Sever et al., 2009, 2015)
- E-GRASP/Eratosthenes proposal submitted to ESA's "Earth Explorer Opportunity Mission EE-9" in June 2016 (Biancale, 2016)
- Simulation studies necessary as a "Proof of Concept"

GFZ contribution

• VLBI simulations to (E-)GRASP

Introduction 0	Simulations	Error Analysis 000000	Conclusions O	References
Outline				

- 2 Simulations with VieVS@GFZ
- 3 Error Analysis
- 4 Conclusions

Introduction O	Simulations •0000000000	Error Analysis 000000	Conclusions O	References
Data				
Data				

Introduction O	Simulations •••••	Error Analysis 000000	Conclusions O	References
Data				
Data				

Orbit configurations

- 925 km × 1400 km (GRASP)
- 755 km × 7465 km (E-GRASP)

Introduction O	Simulations •00000000000	Error Analysis 000000	Conclusions O	References
Data				
Data				

Orbit configurations

- 925 km × 1400 km (GRASP)
- 755 km × 7465 km (E-GRASP)

Network configurations

- 10 stations: typical 10 station IVS global network
- 20 stations: 10 station network plus VLBA (Astronomy, U.S.)
- 30 stations: 20 station network plus extra 10 European stations

Introduction O	Simulations 00000000000	Error Analysis 000000	Conclusions O	References
Data				
Station n	etworks			

Figure: 10 stations network (IVS stations)

VLBI Sim Team @ GFZ

Introduction 0	Simulations 00000000000	Error Analysis 000000	Conclusions O	References
Data				
Station n	etworks			

Figure: 20 stations network (IVS + VLBA stations)

VLBI Sim Team @ GFZ

Introduction O	Simulations 00000000000	Error Analysis 000000	Conclusions O	References	
Data					
Station networks					

Figure: 30 stations network (IVS+VLBA+additional European stations)

Introduction 0	Simulations	Error Analysis 000000	Conclusions O	References
Strategy				
VieVS@GFZ	Simulations			

Introduction	Simulations	Error Analysis	Conclusions	References
	00000000000			
Strategy				

VieVS@GFZ Simulations

1. Scheduling

- For each network, a standard 24 h VLBI schedule (observing quasars) was generated with VIE_SCHED (Sun et al., 2014)
- Satellite observations added when possible
 - A station observes the satellite whenever it and at least one other station can track it above 10° elevation angle
 - 2 minutes sampling interval
 - $\bullet\,$ Quasar observations from ± 2 minutes relative to the satellite observation removed

Introduction 0	Simulations	Error Analysis 000000	Conclusions O	References
Strategy				
VieVS@GFZ	Simulations			

2. Simulation

• VLBI observations simulated for the schedules with VIE_SIM

Introduction 0	Simulations	Error Analysis 000000	Conclusions O	References
Strategy				

VieVS@GFZ Simulations

2. Simulation

- VLBI observations simulated for the schedules with VIE_SIM
- Simulation of the random error sources:
 - Zenith wet delays based on the turbulence model of Nilsson and Haas (2010)
 - Station clocks modeled as random walk plus integrated random walk processes (Herring et al., 1990) with an Allan standard deviation $ASD = 1 \cdot 10^{-14}$ @50 min
 - White noise of 30 ps

Introduction 0	Simulations	Error Analysis 000000	Conclusions O	References
Strategy				

VieVS@GFZ Simulations

3. Estimation

- Simulated observations analyzed with the VieVS2tie software (Plank et al., 2014)
 - Estimated parameters: clocks, ZWD, gradients, EOP, station coordinates
 - Quasar coordinates and (E-)GRASP orbit fixed
 - 3 solutions:
 - a) Original quasar only schedule
 - b) Quasar + (E-)GRASP schedule, applying NNT/NNR for datum definition
 - c) Quasar + (E-)GRASP schedule, no datum constraints (datum realized by the known (E-)GRASP orbit)

Introduction O	Simulations	Error Analysis 000000	Conclusions 0	References
Results				

10 Stations (RMS Scatter)

10 Stations (RMS Scatter)

- Improvement when (E-)GRASP observations are used in addition to quasar ones, relative to quasar only.
- Without NNT/NNR, repeatabilities get worse. Smaller degradation for E-GRASP.

 Sub-centimeter accuracy for 13 (GRASP) and 17 (E-GRASP) out of the 20 stations and the known orbit.

• Sub-centimeter accuracy for 24 (GRASP) and 29 (E-GRASP) out of the 30 stations and the known orbit.

30 Station network: Number of observations

More observations to E-GRASP possible.

30 Stations and 755x7465 Orbit (RMS Scatter)

 Insufficient estimation in case of only VLBI observations to E-GRASP.

VLBI Sim Team @ GFZ

lı c	ntroduction	Simulations 00000000000	Error Analysis	Conclusions O	References
(Outline				

2 Simulations with VieVS@GFZ

4 Conclusions

Introduction O	Simulations 00000000000	Error Analysis ●○○○○○	Conclusions O	References
Data				
Data				

Orbit configurations

- 925 km × 1400 km (GRASP)
- 755 km × 7465 km (E-GRASP)

Network configurations

- 10 stations: typical 10 station IVS global network
- 20 stations: 10 station network plus VLBA
- 30 stations: 20 station network plus extra 10 European stations

Introduction 0	Simulations 00000000000	Error Analysis ○●○○○○	Conclusions O	References
Strategy				
Error Analysis				

Simulations of the VLBI Accuracy of E-GRASP

• Simplistic simulations outside of VieVS@GFZ including measuring the spacecraft position/velocity were developed based on **error analysis** techniques.

Introduction O	Simulations 00000000000	Error Analysis ○●○○○○	Conclusions O	References	
Strategy					
Frror Analysis					

Simulations of the VLBI Accuracy of E-GRASP

- Simplistic simulations outside of VieVS@GFZ including measuring the spacecraft position/velocity were developed based on **error analysis** techniques.
- Reasonable estimates of uncertainties in quantities related to the measurement process are used, including uncertainties in
 - delay measurements
 - rate measurements
 - atmosphere
 - station position displacements
 - spacecraft position and velocity offsets
 - spacecraft orientation
 - clock offsets and clock rate offsets

- Improvement in case of more stations and more dense networks (VLBA, Europe).
- Along and cross track direction position uncertainties of about 5 mm, in nadir of about 1 cm.

Spacecraft Velocity Uncertainty: 2 Orbits x 3 Networks

- Improvement in case of more stations and more dense networks (VLBA, Europe).
- Spacecraft velocity uncertainty better than $1 \frac{mm}{s}$.

Station Position Uncertainty: 2 Orbits x 3 Networks

• Station position uncertainty of about 1 cm.

Introduction 0	Simulations 00000000000	Error Analysis ○○○○○●	Conclusions O	References
Results				
~				

Spacecraft tracking rates

Figure: Fraction of VLBI observations as a function of spacecraft tracking rate

VLBI Sim Team @ GFZ

Outline	

- 2 Simulations with VieVS@GFZ
- **3** Error Analysis

Introdu 0		Simulations 000000000000	Error Analysis 000000	Conclusions •	References	
Summa	ry					
	Conclusion	S				
	 Number of participating VLBI stations is very important for observing (E-)GRASP 					
	Additional stations provide improved resultsDense networks with many short baselines are important					
	 Station station experi 	on repeatabiliti ns and the know ment	es mostly below n E-GRASP orb	1 cm in case of 3 it from a 24 h	0	
	• Insuff VLBI \rightarrow Ob	icient estimation observations to oservations to qu	of station posit E-GRASP. lasars are essent	ions in case of on ial	ly	

Thank you very much for your attention.

Introduction 0	Simulations 00000000000	Error Analysis 000000	Conclusions o	References
Summary				
References				

- Bar-Sever, Y., Haines, B., Bertiger, W., Desai, S., and Wu, S. (2009). Geodetic Reference Antenna in Space (GRASP) - a mission to enhance space-based geodesy. In COSPAR colloquium: scientific and fundamental aspects of the Galileo program, Padua, 2009.
- Bar-Sever, Y., Haines, B., Heflin, M., Kuang, D., Sibois, A., and Nerem, R. (2015). GRASP 2015 revised design and data analysis for a mission to improve the terrestrial reference frame. In Abstract IUGG-4145 presented at 26th IUGG General Assembly 2015, Prague, Czech Republic, June 22 – July 2.
- Biancale, R. (2016). E-GRASP/Eratosthenes: a satellite mission proposal submitted to the ESA/Earth Explorer-9 call. In Abstract presented at First International Workshop on VLBI Observations of Near-field Targets 2016, Bonn, Germany, October 5 - October 6.
- Herring, T. A., Davis, J. L., and Shapiro, I. I. (1990). Geodesy by radio interferometry: The application of Kalman Filtering to the analysis of very long baseline interferometry data. *Journal of Geophysical Research: Solid Earth*, 95(B8):12561–12581.
- Nilsson, T. and Haas, R. (2010). Impact of atmospheric turbulence on geodetic very long baseline interferometry. Journal of Geophysical Research: Solid Earth, 115(B3). B03407.
- Plank, L., Böhm, J., and Schuh, H. (2014). Precise station positions from VLBI observations to satellites: a simulation study. *Journal of Geodesy*, 88(7):659–673.
- Sun, J., Böhm, J., Nilsson, T., Krásná, H., Böhm, S., and Schuh, H. (2014). New VLBI2010 scheduling strategies and implications on the terrestrial reference frames. *Journal of Geodesy*, 88(5):449–461.

755x7465 Orbit (RMS Scatter)

20 Stations

30 Stations

(E-)GRASP Simulations