All you would like to do with the SKA on neutral hydrogen

Martin Zwaan - ESO, Garching

Who cares about neutral gas?

Cold gas takes up only 1% of baryon mass

but:

- H is the most **abundant** element...
- **Fuel** for star formation (via H₂ ...)
- Tracer of galaxy dynamics
- Search tool for missing satellites
- Indicator of galaxy interactions

Evolution of stellar mass and cold gas mass

Need to know the **cold gas** as function of z

NGC 5713/5719 System

HI rogues gallery (Hibbard)

The evolution of the cosmic HI mass density

HI is a phase, not a reservoir

Upcoming will cover DINGO & HI Pathfinder Surveys

Example: deep field HI survey with SKA1

- Single field, 1000 hours
- Frequency range 450-1430 MHz
- Angular resolution: 4", better if possible
- Spectral resolution: 18.3 kHz (4 km/s at z=0)
- Field size: 0.7 deg² at z=0 increasing to 6 deg² at z=2

Example: Wide field z<2 HI survey with SKA₂

- a full SKA₂, mid frequencies
- cover one hemisphere
- one year duration
- measure HI mass function and HI mass density out to z=1.5
- excellent measurement of galaxy power spectrum out to z=1.5

Abdalla et al 2010

Example: z=3 deep HI survey with SKA₂

- one year integration with a full SKA₂, low frequencies
- Observing frequency ~350 MHz
- Field of view ~400 deg²
- $\sim 10^6$ galaxies at z=3

Emission line (1)	Telescope and band (2)	dN/(dz d. 3-σ (22)	A) in 24 h 10-σ (23)	Nb. of detect $3-\sigma$ (24)	ions in 1 yr 10-σ (25)	Nb. of stacked galaxies (26)	Signal-to-noise <i>n</i> of a 24 h stacking (27)
HI	SKA1-LF	-/-	-/-	$51/1.2 \cdot 10^4$	-/340	$1.1 \cdot 10^4$	1/5
HI	SKA2-LF	-/51	-/-	$1.2 \cdot 10^5 / 3.4 \cdot 10^6$	$3.4\!\cdot\!10^3/3.6\!\cdot\!10^5$	$1.1 \cdot 10^{5}$	15/77
CO(1-0)	SKA1-HF	$1.1 \cdot 10^{4}$	$1.5 \cdot 10^{3}$	740	100	1	2
CO(1-0)	SKA2-HF	$1.4 \cdot 10^{5}$	$4.1 \cdot 10^{4}$	$9.1 \cdot 10^3$	$2.8 \cdot 10^3$	1	21
CO(3-2)	ALMA-3	$5.2 \cdot 10^4$	$1.4 \cdot 10^{4}$	610	160	1	9
CO(4–3)	ALMA-3	$3.8 \cdot 10^4$	$1.0 \cdot 10^{4}$	250	69	1	8
CO(5-4)	ALMA-4	$4.2 \cdot 10^4$	$1.4 \cdot 10^{4}$	180	58	1	12
CO(6–5)	ALMA-5	$1.7 \cdot 10^{4}$	$7.6 \cdot 10^{3}$	50	22	1	6
CO(7–6)	ALMA-5	$1.0 \cdot 10^{4}$	$5.7 \cdot 10^{3}$	22	12	1	3
CO(8–7)	ALMA-6	$6.5 \cdot 10^3$	$3.3 \cdot 10^{3}$	11	5.4	1	0.9
CO(9–8)	ALMA-6	$4.0 \cdot 10^{3}$	$1.7 \cdot 10^{3}$	5.2	2.3	1	0.2
CO(10–9)	ALMA-7	$1.5 \cdot 10^{3}$	500	1.6	$5.3 \cdot 10^{-1}$	1	0.03

Obreschkow et al 2011

HIS HIStacking

Ivieasure statistical properties of galaxies beyond where individual detection can be made

> -32 0h50 0h40 0h30 1^h00 **Right Ascension** -32 0^h50 0^h40 0h30 Right Ascension

> > 1^h00 0^h40 0h30 0h50 Right Ascension (J2000)

> > > 1 (

0.8

0.6

0.2

Average Flux (mJy) 0.4

1415

1420 Frequency (MHz)

1425

1430

Aeasurec

Obreschkow et al 2011

21cm intensity mapping

- Measure cumulative HI 21-cm signal from galaxies
- auto-correlation: challenging measurement
- cross-correlation with optical galaxies:
 - Chang et al (2010) detected this signal with the GBT in the DEEP2 field at z=0.8
- with SKA the HI power spectrum and the cosmic mass density of neutral hydrogen can be measured

Chang et al 2010

HI with the SKA

- Role of gas in galaxy evolution
- Cosmology
- Test CDM predictions
- Tully-Fisher
- Detailed morphology and kinematics
- Low column density and connection to intervening absorbers
- HI 21-cm absorbers

