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OUTLINE

> Gravitational wave astronomy with

pulsar timing arrays: sources and detection

> Signal characterization: unresolved

background and resolvable sources
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mergers, MBHBs will

Inevitably form!
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The GW passage cause a modulation of
the MSP frequency
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(Sazhin 1979, Helling & Downs 1983, Jenet et al.
2005, Sesana Vecchio & Volonteri 2009)
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PPTA (Parkes pulsar timing array) |

NanoGrav (north American nHz
observatory for gravitational waves)

LEAP (large European array
for pulsars)
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Verbiest et al. 2009
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Consider a class of sources with differential number density d?n/dzdM
emitting an energy spectrum dE/dInf

4G _ﬁ 1 dEg,
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ffjh YR
w(f) = / e / dzdMdiy, " )

For MBHBs dN/dInfLff 873

torg(f) ~ he(f)/(27f)

(Phinney 2001, Jaffe & Backer 2003, Wyithe & Loeb 2003, Sesana et al. 2004, Enoki et al. 2004)



MILLENNIUM RUN (Springel et al 2005):
> N-body numerical simulations of

the halo hierarchy

> Semi-analytical models for galaxy

formation and evolution

> We extract catalogues of merging
galaxies and we populate them with

sensible MBH prescriptions _
For any relation we employ three

different accretion prescriptions:

a- Accretion after merger

We consider several BH-host relations: :
b- Accretion only onto M, before merger

1- M_ -sigma (Gultekin et al. 2009)

2- M, -M, .. (Gultekin et al. 2009)

3- Mg,;-M, .. Z dep. (Mclure et al. 2006)
4- M,-L, . (Lauer etal. 2007)

c- Accretion on both MBHs before merger

We further assume:
- Circular orbits
- GW driven merger (N(f) o f35)



Theoretical 'average' spectrum

Contribution of individual sources

GW onl
10yr observation
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observed frequency [Hz]

pectrum averaged over 1000
Monte Carlo realizations

Brightest sources in each
frequency bin



Three parameter fit
to the background
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Sesana, Vecchio & Colacino 2008



108 10°
chirp mass [Mg]

Probe systems with
mass >10°M_ at z<1

1000

>a total timing precision of 5-50 ns is required to ;
detect an individual resolvable MBHB T o
>Uncertainties depend on the MBH-host relation —
and MBH accretion route during mergers

Sesana, Vecchio & Volonteri 2009




Babak Sesana & Petiteau, in preparation

In general, given an array of N pulsars, we can pin down up to N/3 individual
sources (consistent with analytical estimates of Boyle & Pen 2010).

Still work in progress (monochromatic sources, earth term only, no noise,
non-optimal search algorithm). Looks promising .




Sesana & Vecchio 2010
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With pulsar term:  -few times better sky location
(Corbin & Cornish 2010) -10% error in luminosity distance




Summary

> Future PTAs will detect the unresolved
MBHB GW background

> At least a dozen (but likely many more) sources
may be individually resolved.

> Error box in the sky not so promising, but resolved
sources are massive and cosmologically nearby.
Good prospects for identifying a counterpart.
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