Fundamental Cosmology* with the SKA

Jens Niemeyer Institut für Astrophysik, Universität Göttingen *specifically, neutrino masses and non-Gaussianity

Information encoded in cosmological perturbations

Inflation

- spectral index, running: inflaton potential
- adiabatic vs. isocurvature perturbations: additional degrees of freedom
- non-Gaussianities: inflaton interactions

Structure formation

• small scale power:

- neutrino masses, sterile neutrinos, warm dark matter (gravitinos etc.)
- linear growth factor: modified gravity theories

Expansion history

 distances from BAO scales: dark energy equation of state, curvature

Limitation 1: sampling variance					
		δP _	_ 1		
		\overline{P} =	$=\overline{N_{ m modes}^{1/2}}$	5	
Range in z	$\Omega({ m sr})$	$N_{\rm modes}$	$\delta P/P$	Surveys	
0.0 - 0.2	3.0	3×10^4	6×10^{-3}	$SDSS, SKA_0$	
0.2 - 0.7	3.0	8×10^5	1×10^{-3}	BOSS	
0.2 - 2.0	0.06	1×10^5	3×10^{-3}	SKA_1	
0.2 - 2.0	6.0	1×10^7	$3 imes 10^{-4}$	SKA ₂ , BigBOSS, Euclid	
2.0 - 3.0	0.3	6×10^5	1×10^{-3}	HETDEX	
2.0 - 6.0	0.01	7×10^4	a	SKA_1	
2.0 - 6.0	6.0	4×10^7	$2 imes 10^{-4}$	SKA_2	
6.0 - 13.0	0.03	2×10^5	Ь	SKA_0	
6.0 - 13.0	0.03	2×10^5	2×10^{-3}	SKA_1	<u> </u>
6.0 - 13.0	3.0	2×10^7	$2 imes 10^{-4}$	SKA_2	201
13.0 - 30.0	0.03	2×10^5	Ь	SKA_1	gs
13.0 - 30.0	3.0	2×10^7	$2 imes 10^{-4}$	SKA_2	vlin
CMB	11.0^{c}	2×10^5		WMAP, Planck	Rav

AG Tagung 2011

Cosmic variance limited 21cm-cosmology

Loeb & Wyithe 2008

AG Tagung 2011

Neutrino masses

- neutrinos suppress the power spectrum below free-streaming scale (several % at k > 0.1 h/Mpc for ~ 0.1 eV nu)
- cosmological bounds: sum of neutrino masses < 0.3 eV (Thomas et al. 2010)
- neutrino oscillations: at least one neutrino has mass > 0.05 eV
- need z>~ 1, k > 0.2 h/Mpc for analytical treatment of power spec. at % level
- SKA forecasts : Abdalla & Rawlings 2007

Primordial non-Gaussianity

Killing vanilla inflation

- Inflation predicts nearly Gaussian (independent k modes) curvature perturbations.
- Define amplitude f_{nl} for (local type) non-Gaussianity:

 $\Phi(x) = \phi(x) + f_{\rm nl}(\phi^2(x) - \langle \phi^2(x) \rangle)$

 Vanilla (single field, slow roll, canonical kinetic term, standard vacuum,...) inflation predicts f_{nl} = 0.015, hence any detection will kill vanilla inflation.

Mapping out the inflaton Lagrangian

- Different kinds of modifications (i.e., coupling of the inflaton to itself or other fields) produce distinct signatures in higher N-point functions (bispectrum etc.)
- Current discussion uses bispectrum shapes (local, folded, equilateral,...), but more precise language needed (perhaps based on Shellard et al.'s polyspectra)
- Perhaps the best (only?) way to learn about the inner workings of inflation

Measuring primordial non-Gaussianity

CMB

- current best limit from CMB bispectrum (WMAP 7, Komatsu et al. 2010): $f_{nl} = 32 \pm 21$
- Planck expected to give $\Delta f_{nl} \sim 5$

Large-scale structure

- cluster mass function
- galaxy power spectrum: strong scale dependent bias (Dalal et al. 2008)
- this effect is already competitive with CMB (-29 < f_{nl} < 70, Slosar et al. 2008; 25 < f_{nl} < 117, Xia et al. 2010)
 - strongest on large scales, need large volume
 - need strongly biased tracer, or combine 2 tracers to eliminate sampling variance (Seljak 2009), e.g. optical and HI ?
- galaxy bispectrum: potentially strongest constraints for non-local PNG

Marin et al. 2010

AG Tagung 2011

Sefusatti et al. 2009

Challenges for theory and simulations

Modelling HI evolution

- so far mostly from semi-analytic models (e.g., Kim et al. 2010)
- hydro + N-body simulations: careful treatment of self shielding and subgrid physics needed (Duffy et al. 2011)
- need large computational volumes to predict large-scale HI bias

Non-Gaussianity from LSS surveys

- define observables and estimators for general classes of non-Gaussianity (Fergusson, Regan, Shellard; ...)
- connect with effective field theories for inflation (Senatore, Zaldarriaga, Baumann, Green; ...)