LOFAR and Cosmic Rays

Heino Falcke Radboud University, Nijmegen ASTRON, Dwingeloo Max-Planck-Institut für Radioastronomie, Bonn

LOFAR Superterp (6 stations) terp (NL) = 'hill'

- Low-Band Antennas (LBA):
 - 10-80 MHz
 - 48 crossed wire dipoles per station
- High-Band-Antennas (HBA):
 - 120-240 MHz
 - 48 tiles of 16 bow-tie antennas per station

37 operational stations41 completed7 still to go

Deep EOR Imaging

de Bruyn, Labropoulos, Jelic, Yatawatta, et al.

Taurus A with international baselines

1 Core station, 7 remote stations, 2 international stations

Detection of central source (Crab pulsar)

O. Wucknitz (Bonn)

Polarized structure in Fan Region with RM synthesis

DEPART

RADBOUN

OF

UNIVERSIT'

Polarized structure in Fan Region

· DEP4A

. RADBOUD

OF AST

UNIVERSITY

NUMEGEN

See Mol & Romein 2011 for multi-beam tied-array benchmarking results Credit: Hessels, Stappers & Scaife

LOFAR

First Science with LOFAR - Dalfsen - Sept. 14th, 2011

Data <12 hours old!!! >100 beam Tied-Array!! Talks by Hessels

Pulsar in the center of FoV

Pulsar is 10x brighter in the correct beam!

Credit: Alexov & Hessels

LOFAR

First Science with LOFAR - Dalfsen - Sept. 14th, 2011

Talks by Coenen

Independent discovery J2317+68

Cosmic Ray Energy Spectrum

- Cosmic rays are very energetic particles (v~c) accelerated in the cosmos
- They reach energies beyond what can be achieved in accelerators (5 Nobel prizes for fundamental physics)
- The differential Cosmic Ray spectrum is described by an almost universal power law with a E^{-2.75} decline.
- Low-energy cosmic rays can be directly measured.
- High-energy cosmic rays are measured through their air showers.
 - What are they made of?
 - Where do they come from?
 - What is the highest energy?

Coherent Geosynchrotron Radio Pulses in Earth Atmosphere

UHECRs produce particle showers in atmosphere

Shower front is ~2-3 m thick ~ wavelength at 100 MHz

RADBOUN

- e[±] emit synchrotron in geomagnetic field
- Emission from all e[±] (N_e) add up coherently
- Radio power grows quadratically with N_e

 \Rightarrow E_{total}=N_e*E_e

- \Rightarrow Power $\propto E_{e^2} \propto N_{e^2}$
- \Rightarrow GJy flares on 20 ns scales

Falcke & Gorham (2003), Huege & Falcke (2004,2005)

LOFAR Radboud Air Shower Array Talk by Satyendra Thoudam

Individual events LOPES vs. REAS3

roughly 40-50% show very good agreement

Huege, Ludwig, et al. (2011)

Individual events LOPES vs. REAS3

roughly 10-20% show a deviation in slope (usually sim too steep)

Huege, Ludwig, et al. (2011)

Cosmic Rays seen with LOFAR

Ter Veen, Corstanje, Nelles, Falcke, Schellart, Hörandel, Satyendra, et al.

Most densely instrumented measurements of air shower radio emission!

TBB Imager

Schellart et al. (Radboud Univ)

UHE World Neutrino Limits

Buitink et al. (2009), A&A - Scholten et al. (2010), Phys. Rev. Lett.

Summary

- LOFAR can do ns-timescale detection and imaging of radio flashes
- Radio detection of CRs has matured into a serious technique
- ⇒ Direct detection of CR air showers with LOFAR works:
 - Investigate composition of CRs (synergy LOFAR & AUGER)
- Search for radio pulses from UHECRs hitting the moon:
 - Best UHECR and neutrino limits beyond 10²¹ eV for LOFAR
- SKA will detect particles >10²⁰ eV, be most sensitive detector
- ⇒ Also: Hunting FRATs (fast radio transient at t<1s)</p>
 - Lightning, radio flares from planets, stars, neutron stars, black holes, and extraterrestrials (SETI) ...
 - Ready to explore the unknown stay tuned

NuMoon – Cosmic Rays hitting the Moon (Mevius)

No pulses other than Gaussian noise were found in 5 minutes of data

Next steps:

- Repeat analysis on full bandwidth data
- More stations (tied array mode)
- Point one or more beams to the Moon, to check for differences
- Investigate short time structure of others sources?
- Implement simple trigger (@TBBS or CEP)