What we could learn about the Galactic nucleus with the SKA

Roland Crocker MPI-K Heidelberg

David Jones

Thanks to collaborators:

Felix Aharonian

Casey Law

Fulvio Melia

Juergen Ott

Tomo Oka

Point

 despite ~18 orders of magnitude separation in energy, there is an intimate connection between radio continuum photons and gamma-rays...

Synchrotron

Bremsstrahlung

Fermi data reveal giant gamma-ray bubbles

Su, Slatyer and Finkbeiner 2010 (ApJ)

- 4 x 10³⁷ erg/s
- hard spectrum, but spectral down-break below ~ GeV in SED
- uniform intensity
- sharp edges
- vast extension: ~10 kpc from plane

2 GeV < E < 5 GeV

Su, Slatyer and Finkbeiner 2010 (ApJ)

Fermi Bubbles WMAP 23 GHz haze

Su, Slatyer and Finkbeiner 2010 (ApJ)

Su, Slatyer and Finkbeiner 2010 (ApJ)

'Natural' explanation: HE, primary electrons

- ~GeV γ-ray emission from IC by hypothesised population of hard-spectrum ~TeV electrons
- same population synchrotron-radiates into microwave frequencies

Electron scenarios

~TeV electrons \Rightarrow fast cooling time (~10⁶ years)

- Very fast transport (>3% c) \Rightarrow relativistic outflow \Rightarrow AGN jet from Sgr A*
- In situ acceleration

Proton scenarios ~100 GeV protons ⇒ slow cooling time

(few 10⁹ years)

Secondaries from pp collisions

Broad questions

- Are the Fermi Bubble gamma-rays due to cosmic ray electrons or protons?
- Are these structures associated with recent AGN-like activity of Sgr A* or with GC star formation (over much longer timescales)?

3 measurements that would help us understand the GC outflow

- Trace low surface brightness, non-thermal radio continuum spurs from the Galactic plane out into the bulge
- Measure the low-frequency spectrum of the 'Fermi Bubbles'
- Determine magnetic field/topology of 'Fermi Bubbles'/GC spur with RM studies of extra-galactic, polarized sources

Secondary electrons: spectral features at lf

HESS TeV data: Aharonian et al 2006

2.7 GHz radio data (unsharp mask) Pohl, Reich & Schlickeiser 1992

HESS TeV data: Aharonian et al 2006

2.7 GHz radio data (unsharp mask) Pohl, Reich & Schlickeiser 1992

Spitzer 8 micr Stolovy 200

Conclusions

- At a minimum the Fermi Bubbles represent important foregrounds to extra-galactic/ cosmological observations - predicted intensity at GHz ~10⁻¹⁹ erg/(s cm² Hz sr)
- More interestingly, they are likely aspects of the feedback processes that connect the activity of the Galactic nucleus to the wider Galaxy
- If they are due to cosmic ray protons, they represent a calorimetric recording of Galactic centre star-formation over the age of the Milky Way