Large Scale Interstellar Medíum Símulatíons and their implications for the Radío Sky

Dieter Breitschwerdt

Zentrum für Astronomie und Astrophysik

Technische Universität Berlin

Collaborators

Miguel de Avillez (Evora, Portugal) Verena Baumgartner (Vienna, Austria) Jan Bolte (TU Berlin, Germany) Ralf-Jürgen Dettmar (Bochum, Germany) Volker Heesen (Hertfordshire, UK) Michael Schulreich (TU Berlin, Germany) Robert Tautz (TU Berlin, Germany)

Overview

- High Resolution Numerical Simulations
- Hydro/MHD-Simulations
- Non-Equilibrium Ionization Structure (Electron Density Distribution)
- Radio Halos: Electron Transport
- Summary

M33: composite Chandra & HST

- filaments
- structure on scales
 → turbulence
- wide range of temperatures, densities
 → multiphase
- gas, magnetic fields,
 cosmic rays, dust ...
 → multicomponent

High Resolution ISM Simulations

- Solve full HD/MHD equations on a large grid: $1 \text{ kpc} \times 1 \text{ kpc} \times \pm 10 \text{ kpc}$ ($\Delta x=0.5 \text{ pc or less}$)
- Fully time-dependent non-equilibrium ionization (NEI) structure
- Type Ia,b,c/II SNe random + clustered in disk
- Background heating due to diffuse UV photon field
- Gravitational field by stars + self-gravity
- SFR \propto local density/temp.: n >10 cm⁻³/T<100 K
- Generate stars according to an IMF
- Formation and motion of OB associations (\rightarrow random velocity of stars) Evolution of computational volume for $\tau \sim 400$ My
- sufficiently long to erase memory of initial conditions!
- 3D calculations on parallel processors with adaptive mesh refinement (AMR)

HD-Evolution of ISM

Avillez & Breitschwerdt, 2010

- Collective effect of SNe induces break-out of ISM disk gas → "galactic fountain" (cf. intermediate velocity clouds) → reduce disk pressure
- * Density and temperature distribution shows structures on all scales (cf. observation of filaments) → turbulence
- large amount of gas in
 thermally unstable phases
- electron density distribution determined by turbulence and non-equilibrium ionization (NEI)

MHD-Evolution of ISM

Avillez & Breitschwerdt, 2005

B-field / / to disk cannot prevent outflow into halo; Halo density is **inhomogeneous (Fountain)**

Which pressure determines ISM dynamics?
For T < 200 K: magnetic pressure dominates,
for 200 K < T < 10⁶ K ram pressure dominates,
for T>10⁶ K thermal pressure dominates Dieter Breitschwerdt (T^{AU} Berlin) - AG 2011 - Heidelberg, 20.9.2011

NEI structure of ISM: n_e distribution

- study **electron density distribution n**_e in solar neighbourhood in **NEI**
- simulations in good agreement with pulsar dispersion measures for $|b| < 5^{\circ}$; $< n_e > = DM/d$
- n_e distribution is lognormal: $< n_e > = 0.04 \pm 0.01$ cm⁻³

Avillez, Asgekar, Breitschwerdt, Spitoni (2011)

Top: NEI simulation of electron density **Left**: Electron density derived from measurements of 75 pulsars for $|b| < 5^{\circ}$; Result: $log(n_e) = -1.386$, $\sigma=0.33$

Middle & Right: Histograms (solid lines) and Gaussian fits (dashed lines) from dispersion measures of <u>NEI simulations</u> taken at different times; $log(n_e) = -1.4$ to -1.38, $\sigma=0.16 - 0.21$

Dieter Breitschwerdt (TU Berlin) - AG 2011 - Heidelberg, 20.9.2011

NEI structure of ISM (VI): n_e distribution

- electron distribution n_e different for NEI \rightarrow ionization structure and number of free electrons is different
- pulsar dispersion measures (mean, minimum and maximum) are in very good agreement with observations (from ATNF catalogue with distance measurements)
- <ne> remains almost constant with distance

Dieter Breitschwerdt (TU Berlin) - AG 2011 - Heidelberg, 20.9.2011

Avillez, Asgekar, Breitschwerdt, Spitoni (2011)

Top: Time averaged histogram of electron densities for different ISM regimes in Galactic disk Left: time averaged dispersion measures (mean, minimum and maximum) over a period of 50 Myr, 501 snapshots taken at 0.1 Myr intervals Right: electron density as a function of distance (blue crosses: pulsar observations)

Radio Continuum Halo Emission (I)

- Nonthermal radio emission of NGC4631
- Significant linear polarization to z ~5 kpc
- Solving diffusion-advection equation for rel. electrons with synchrotron and IC loss

$$- \frac{\partial}{\partial z} \left(D(E,z) \frac{\partial N(E,z)}{\partial z} - u(z)N(E,z) \right)$$
$$- \frac{\partial}{\partial E} \left(\frac{1}{3} \frac{du}{dz} EN(E,z) - \frac{dE}{dt}N(E,z) \right) = Q(E,z)$$
$$= K_0 E^{-\gamma_0} h_g \delta(z)$$

Spectral index variation along minor axis explained by accelerating wind!

Radio Continuum Halo Emission (II)

- Non-thermal radio emission of NGC 253:
- spectral index close to sources up to vertical distances from disk of z ~ 1-2 kpc dominated by diffusion
- for z ≥ 1-2 kpc transport dominated
 by advection due to galactic wind
- transport mechanism varies locally in agreement with local superbubble break-out from galactic disk

Advection Diffusion Diffusion-Advection

Top: Comparison between the model (including a galactic wind) and observations (blue dots with error bars) of the starburst galaxy NGC 253; data from Heesen et al.

Radio observations of NGC 891

Radio continuum observations of NGC 891 halo at different radio frequencies

Lower halo: transport is diffusive Upper halo: transport is advective

Summary & Conclusions

- ISM radio observations (e.g. cold, warm and ionized galactic medium) can constrain high resolution ISM simulations
- Compare MHD simulations of galactic magnetic fields on small and large scales with SKA observations
- Study ISM and magnetic fields in young (high redshift galaxies)
- Galactic winds driven by CRs and/or thermal gas modify structure of galactic halos (best observed edge-on)
- ★ steady-state models & full blown high resolution AMR simulations
- ✤ → study transport of CR electrons in galactic outflows
- ⋆ → spectral index variations along minor axis
- ✤ → study magnetic fields in galactic halos
- * CR acceleration beyond the "knee" in galactic halos?

Suggestions & Collaborations on Topics of Common Interest Welcome

Dieter Breitschwerdt (TU Berlin) - AG 2011 - Heidelberg, 20.9.2011