Search for thermal X-ray radiation from hot polar cap in pulsars

Janusz Gil
Andrzej Szary, Giorgi Melikidze

Kepler Institute of Astronomy
University of Zielona Góra, Poland

June 14, 2014
Simplest pulsar toy model

Two beams originating above two opposite Polar Caps

Pulse observed when at least one of them hits the Earth

Observations clearly show that each beam has complicated and dynamic structure

More detailed toy model needed

Pulsar carousel model (see next slide)
Spark associated subpulse radio sub-beams

\[P_4 = N P_3 \]

Thermal X-ray radiation from hot Polar Cap

\[L_b \approx \sigma A T_s^4 \]

Spark-delivered streams of electron-positro plasma

Sparks heated Polar Cap

\[T_s > 10^6 \text{K} \]
Co-rotating magnetosphere

\[E_c = - (\Omega \times r/c) \times B_s \]
force-free magnetosphere

\[E_c \cdot B_s = 0 \quad \Delta V_{||} \quad (\text{GJ69, RS75}) \]

No acceleration along \(B \) (no radio emission?)

\[\rho_c = \rho \left(\frac{1}{2\pi} \right) \text{div} E_c = \rho_{\text{GJ}} \]
Co-rotating charge density

\[= -\Omega \cdot B/(2\pi c) = \pm B_s/cP \]

\[v_{\text{cor}} = c \left(E_c \times B_s \right)/B^2 = cE_c/B_s \]
Linear co-rotation velocity

\[v_{\text{dr}} = c \left(\Delta E \times B_s \right)/B^2 = c\Delta E_c/B_s \]

Non-corotation -> deviation from the GJ charge density (\(\rho < \rho_c = \rho_{\text{GJ}} \))
Non-corotation

Pulsar radiation requires acceleration of charged particles along magnetic field lines \rightarrow electric field along field lines \rightarrow deviation from GJ charge density \rightarrow NON-COROTATION

\[
\vec{E} = \vec{E}_c + \vec{E}_\perp
\]

\[
\rho = (1 - \eta) \rho_{\text{GJ}}; \quad \eta \ll 1
\]

\[
\Delta \vec{E}_\perp = \vec{E}_c - \vec{E}_\perp
\]

\[
\vec{v}_{\text{drf}} = c \frac{\Delta \vec{E}_\perp \times \vec{B}_s}{B_s^2}
\]

Evidence of NON-COROTATION should be clearly present in pulsar data in form of some consistent drift motion of pulse constituents (subpulses)
Sub-pulse drift

Line-of-sight (l-of-s) grazing the overall pulsar beam

Apparent subpulse drift-bands

Modulation of intensity along drift-bands consistent with carousel model

that is

Sub-beams seem to continue to circulate beyond the observed pulse-window

(after van Leuven, Stappers et al.)
Carousel Model

Apparent drift rate

\[D = \frac{P_2}{P_3} \]

- \(P_2 \) - distance between driftbands in longitude
- \(P_3 \) - distance between driftbands in \(P_1 \)

Intrinsic drift rate

\[P_4 = P_3 N, \; N - \text{number of rotating sub-beams} \]

- \(P_4 \) - distance between the same driftbands and time interval to complete one rotation around the pole

very difficult to measure, only 8 cases known !!!
The basic features of the Partially Screened Gap (PSG) model (Gil, Melikidze & Geppert 2003) are as follows:

- Positive charges cannot be supplied at the rate that would compensate the inertial outflow through the light cylinder. As a result, a significant potential drop develops above the polar cap.

- Backflow of electrons heats the surface to temperature above 10^6 K. Thermal ejection of iron ions causes a partial screening of the acceleration potential drop. Consequently, backflow heating decreases as well. Thus heating leads to cooling which is a classical thermostat.

- Surface temperature T_s is thermostatically regulated to retain its value close to critical temperature T_i above which the thermal ion flow reaches co-rotation limited level (Goldreich-Julian charge density), thus $T_{BB} = T_s \approx T_i$

- According to calculations of the cohesive energy by Medin & Lai 2007, this can occur if the surface magnetic field is close to 10^{14} G. In majority of radio pulsars this has to be a highly non-dipolar crust anchored field.

\[
T_i = \frac{\epsilon}{30k} = \left(7 \times 10^4 K \right) \left(\frac{B_s}{10^{12} G} \right)^{0.7}
\]

\[
T_s \approx T_i > 10^6 K
\]

\[
\rho_{\pm} + \rho_{th} = \rho_{GJ}
\]
Thermal X-ray radiation (the hot spot)

Figure: Surface temperature vs. strength of surface magnetic field. The dashed line corresponds to critical temperature (Medin and Lai 2008).

\[b = \frac{A_{pc}}{A_{BB}} \]

Magnetic flux conservation law

\[B_s = b \cdot B_d \sim 10^{14} \, \text{G}, \]

<table>
<thead>
<tr>
<th>Name</th>
<th>(T_{BB}) ((10^6 , \text{K}))</th>
<th>(R_{BB}) (m)</th>
<th>(R_{pc}) (m)</th>
<th>(b)</th>
<th>(B_s) ((10^{14} , \text{G}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>J0108–1431</td>
<td>3.2</td>
<td>6</td>
<td>161</td>
<td>768</td>
<td>3.9</td>
</tr>
<tr>
<td>B0628–28</td>
<td>3.3</td>
<td>64</td>
<td>130</td>
<td>4</td>
<td>0.2</td>
</tr>
<tr>
<td>J0633+1746</td>
<td>1.7</td>
<td>62</td>
<td>297</td>
<td>23</td>
<td>0.7</td>
</tr>
<tr>
<td>B0834+06</td>
<td>2.0</td>
<td>30</td>
<td>128</td>
<td>18</td>
<td>1.1</td>
</tr>
<tr>
<td>B0943+10</td>
<td>3.1</td>
<td>22</td>
<td>138</td>
<td>126</td>
<td>3.2</td>
</tr>
<tr>
<td>B0950+08</td>
<td>2.3</td>
<td>42</td>
<td>288</td>
<td>48</td>
<td>0.2</td>
</tr>
<tr>
<td>B1133+16</td>
<td>3.2</td>
<td>14</td>
<td>133</td>
<td>96</td>
<td>4.1</td>
</tr>
<tr>
<td>B1451–68</td>
<td>4.1</td>
<td>14</td>
<td>282</td>
<td>418</td>
<td>1.4</td>
</tr>
<tr>
<td>B2224+65</td>
<td>5.8</td>
<td>28</td>
<td>175</td>
<td>39</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Possible non-dipolar structure of the magnetic field lines. The magnetic field structure was obtained using crust-anchored local anomalies (Gil et al. 2002, Szary et al. in preparation).

"The Hall drift can produce small-scale strong surface magnetic field anomalies (spots)." (Geppert et al. 2013)
Possible interrelation between radio and X-ray signatures of drifting subpulses in pulsars

\[L_b \text{ versus } P_4 \]

Thermal (bolometric) luminosity from polar cap heated by sparks associated with (drifting) subpulses

\[L_b = \sigma T^4 A_{bol} = \sigma T^4 A_{pc} (B_d/B_s) \]

Tertiary (carousel) subpulse drift periodicity \(\rightarrow \) circulation period of subpulse associated sparks

\[P_4 \approx 2\pi r_p/v_d \]
Thermal X-ray luminosity from spark-heated polar cap [erg/s]

\[L_b = 2.5 \times 10^{31} \times (P_{-15}/P^3)(P_4/P)^{-2} \]

Spin-down power

\[\dot{E} = I\Omega\dot{\Omega} \quad I = I_{45}10^{45} \text{ g cm}^2 \]

Efficiency of thermal radiation from hot PC

\[\frac{L_b/\dot{E}}{(0.63/I_{45})(P_4/P)^{-2}} \]

Intensity of thermal BB radiation is correlated with plasma circulation rate

(acceleration)

\[L_b - \text{Polar Cap heating rate due to } \Delta E_\parallel \]

(drift)

\[P_4 - \text{plasma circulation rate due to } \Delta E_\perp \]

Two components of the non-corotation electric field above the Polar Cap

\[\Delta E_\parallel \sim \Delta E_\perp \]
The Chameleon pulsar (B0943+10)

$P_1 = 1.089 \text{ s}$

$P_3 = 1.87P$ (primary)

$P_3 = 2.15P$ (aliased)

$P_4 = 37.35P$

Number of sub-beams circulating around B

$N = P_4 / P_3 = 20$

(Deshpande & Rankin 1999)
The variable X-ray emission of PSR B0943+10

Parameters of simultaneous B and Q modes spectral fits (see Table 3 in (Mereghetti et al. 2013))

<table>
<thead>
<tr>
<th>Model</th>
<th>T_s (MK)</th>
<th>R_{BB} (m)</th>
<th>PL</th>
<th>N_h 1020 cm$^{-2}$</th>
<th>χ^2_{red}/dof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant BB and pulsed PL</td>
<td>3.0</td>
<td>21</td>
<td>2.2</td>
<td>2.4</td>
<td>0.99/16</td>
</tr>
</tbody>
</table>

The power-law model for the B-mode yields a rather steep spectrum (photon index of 4.1)

An interstellar absorption is larger than that expected based on the total Galactic column density in this direction (2.3×10^{20} cm$^{-2}$ (Kalberla et al. 2005))

"Study of the remarkable X-ray variability of PSR B0943+10" (300 ks, AO-13, XMM-Newton, Mereghetti et. al)
\[\frac{L_b}{\dot{E}} = \left(\frac{0.63}{I_{45}} \right) \left(\frac{P_4}{P} \right)^{-2} \]

\[I = I_{45} \times 10^{45} \text{ g cm}^2 \]

\[I_{45} = 1 \pm 0.15 \]
PSR B1133+16 (drifting sub-pulses)

\[P_4 = 28.44P_1 \]

\[P_3 = (1.237 \pm 0.011)P_1 \]

\[N = \frac{P_4}{P_3} = 22.991 \pm 0.01 = 23 \]

23 sub-beams!

(Rankin et al. 2007)
The past: "X-ray emission from the nearby PSR B1133+16..." (Kargaltsev et al. 2006)

\[P = 1.188 \text{ s}, \quad \dot{P}_{-15} = 3.73 \]

PSR B1133+16 was observed in Feb. 2005 by the Chandra ACIS instrument for an exposure of \(\sim 18 \) ks.

\[A_{pc} \approx 5.5 \times 10^4 m^2 \quad A_{BB} \approx 5 \times 10^2 m^2 \]

\[A_{pc} \approx 100 A_{BB} \]

Because of the small number of counts detected (33 within the source extraction aperture), the spectrum did not allow to differentiate between models like powerlaw or blackbody.

(Kargaltsev et al. 2006).
The future: "A simultaneous X-ray and radio observation of the nearby pulsar B1133+16" (Gil et. al)

Simulated EPIC-pn spectra assuming a black-body (blue points) or powerlaw (red points). The assumed exposure time is 100 ks. *(The XMM-Newton proposal, Gil et al.)*

X-ray observations: five observing sessions with XMM-Newton, 146 ks in total

- 25th May (25 ks)
- 31st May (23 ks)
- 14th June (38 ks)
- 22nd June (35 ks)
- 28th June (25 ks)

Simultaneous radio observations

- GMRT - 315 MHz
- Effelsberg - 5 GHz
- LOFAR - 100 MHz
- Kunming 1.4 GHz
Thank you

- "A simultaneous X-ray and radio observation of the nearby pulsar B1133+16" (146ks, XMM-Newton, Gil et. al)
- "Study of the remarkable X-ray variability of PSR B0943+10" (300 ks, XMM-Newton, Mereghetti et. al)
A rapid global transformation of the pulsar magnetosphere?

Figure: Aligned X-ray and radio pulse profiles of PSR B0943+10 in its B- and Q-modes (Hermsen et al. 2013).

Spectral parameters (see Table S4 in (Hermsen et al. 2013))

<table>
<thead>
<tr>
<th>Mode</th>
<th>Model</th>
<th>T_s (MK)</th>
<th>R_{BB} (m)</th>
<th>PL</th>
<th>χ^2_{red}/dof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q total</td>
<td>BB+PL</td>
<td>3.2 ± 0.5</td>
<td>22 ± 9</td>
<td>2.6 ± 0.3</td>
<td>0.81/20</td>
</tr>
<tr>
<td>Q pulsed</td>
<td>PL</td>
<td>–</td>
<td>–</td>
<td>2.5 ± 0.4</td>
<td>3.17/3</td>
</tr>
<tr>
<td>Q pulsed</td>
<td>BB</td>
<td>3.7 ± 0.1</td>
<td>33 ± 4</td>
<td>–</td>
<td>0.38/3</td>
</tr>
<tr>
<td>B total</td>
<td>PL</td>
<td>–</td>
<td>–</td>
<td>2.3 ± 0.2</td>
<td>0.88/10</td>
</tr>
<tr>
<td>B total</td>
<td>BB</td>
<td>2.7 ± 0.2</td>
<td>22 ± 11</td>
<td>–</td>
<td>0.74/10</td>
</tr>
</tbody>
</table>
Preliminary results: Day 1 (x-ray/radio coverage)

No Effelsberg observation (VLBI session), Kunming data not yet included in the figure.

No Effelsberg observation (VLBI session), Kunming data not yet included in the figure.
Preliminary results: Day 1 (x-ray background counts)

- **Count Rate Histogram**
 - Fit Limits: Blue
 - Selection Limits: Red
 - ObsID: 0741140201
 - Fit Norm: 367.0
 - Fit Width: 0.385 c/s
 - Fit Center: 2.631 c/s

- **FOV Light Curve**

- **Corner Light Curve**
Preliminary results: Day 2 (x-ray/radio coverage)

GMRT start delayed due to correlator malfunction, Kunming data not yet included in the figure.

GMRT start delayed due to correlator malfunction, Kunming data not yet included in the figure.
Preliminary results: Day 2 (x-ray background counts)

Count Rate Histogram

FOV Light Curve

Corner Light Curve