Survey for Pulsars and Extra-galactic **Radio Bursts**

OF TECHNOLOGY

Ewan Barr SKA Senior Research Fellow,

Credit & © Shaun Amy

Tuesday, 17 June 14

WHAT NEXT?

- Desire to keep momentum with new Parkes discoveries
- Many pulsars to be found before MeerKat, FAST and company come online
- Exotic systems often require multiple passes of any given survey field to be detected (scintillation is your frenemy)
- New processing tools available due to the wide availability high performance accelerator hardware
- New facilities available to perform shadowing and follow-up
- Many mysteries still to be solved and much science to be done (pulsars just keep giving)

Survey for Pulsars and Extra-galactic Radio Bursts

SUrvey for Pulsars and Extra-galactic Radio Bursts

S U P E R B

KEY SCIENCE

Technology demonstration for next-generation instruments

TARGET FIELD

- Extends the HTRU medium latitude survey out to +-25 degrees
- Fills in "gaps" in HTRU high latitude tessellation pattern
- Probing latitudes known to contain FRBs

TECHNOLOGY

gSTAR / swinSTAR cluster

DRAM

• 249 C2070, M2070 and K10 class GPUs

GPU

- BPSR pulsar search backend
- 14 C2070 class GPUs

REAL-TIMETRANSIENTS

HEIMDALL (Barsdell et al. in prep.)

- Searches out to a DM of 2000 pc/cc
- Sensitive to pulses as narrow as 64 us
- Discovered several FRBs and RRATS

TRANSIENTS BUFFERS

REAL-TIME ACCELERATION SEARCH

•

PEASOUP (Barr et al. in prep.)

• Capable of high speed linear acceleration correction

• Required for detection of relativistic binaries

Fastest ever pulsar searching system (100 times)

Pea soup

Pea soup or split pea soup is soup made typically from dried peas, such as the split pea. It is, with variations, a part of the cuisine of many cultures. Wikipedia

Nutrition Facts Pea soup

Amount Per 100 grams 👻

Calories 61

Total Fat 1.1 g

% Daily Value*

1%

MACHINE LEARNING & CANDIDATE CLASSIFICATION

SPINN (Morello et al. 2014)

- "Minimalist" neural network implementation
- Implements multibeam candidate pre-selection
- Overcomes overspecification issues of predecessors
- 0.01% false positives for 100% recall rate

Tuesday, 17 June 14

 \mathbf{x}_1

PEASOUP + SPINN

Pipeline tested on HTRU medlat survey (50 m/s/s and 0-400 pc/cc)

• 7 new pulsars discovered (3 confirmed in real time)

• 3 MSPs including fastest pulsar outside of a globular cluster (669 Hz)

SYNERGIES

Shadowing

Multi- λ followup

LIGO

ATCA

Thai

lagellan

MOLONGLO

MOLONGLO

- Key science objectives:
 - 24/7 burst monitoring for FRB population statistics
 - Timing of 500+ pulsars per day (glitch monitoring, timing noise investigations)

Frequency	843 MHz
Bandwidth	30 MHz
Gain	~3.5 K/Jy
FOV	9.76 sq.deg

MOLONGLO

- Key science objectives:
 - 24/7 burst monitoring for FRB population statistics
 - Timing of 500+ pulsars per day (glitch monitoring, timing noise investigations)

Frequency	843 MHz
Bandwidth	30 MHz
Gain	~3.5 K/Jy
FOV	9.76 sq.deg

- Key SUPERB synergies:
 - Confirmation of the astrophysical origin of FRBs !!!
 - Better FRB localisation for optical/x-ray/radio follow-up
 - Much better constraints on the intrinsic spectra of FRBs (and on DM sweep index)

Tuesday, 17 June 14

CONCLUSIONS

- SUPERB will:
 - Find a host of new pulsar systems (~20 MSPs and ~100 normal pulsars)
 - Find & localise FRBs
 - Constrain FRB spectra
 - Provide the first FRB polarisation information
 - Solve the "June problem" and improve rate estimates
 - Demonstrate the immense power of GPUs for pulsar and transient searching
 - ...much more

 N_{ν} $D_{\rm DM,t} = \sum A_{\nu,t+\Delta t(\rm DM,\nu)}$

Sum all frequencies along lines of constant dispersion measure

 $D_{\rm DM,t} = \sum_{\nu}^{N_{\nu}} A_{\nu,t+\Delta t({\rm DM},\nu)}$

Sum all frequencies along lines of constant dispersion measure

 N_{ν} $D_{\rm DM,t} = \sum A_{\nu,t+\Delta t(\rm DM,\nu)}$

Sum all frequencies along lines of constant dispersion measure

 N_{ν} $D_{\rm DM,t} = \sum^{\nu} A_{\nu,t+\Delta t({\rm DM},\nu)}$

Sum all frequencies along lines of constant dispersion measure

 N_{ν} $D_{\rm DM,t} = \sum A_{\nu,t+\Delta t(\rm DM,\nu)}$

Sum all frequencies along lines of constant dispersion measure

$$\Delta DM = \frac{-4\pi m_e c \nu_a^2 \beta (\epsilon \Delta \nu - \nu_a)^2}{e^2 \epsilon \Delta \nu (\epsilon \Delta \nu - 2\nu_a)}$$

$$\beta = \sqrt{w_{\rm int}^2 + t_{\rm samp}^2 + t_{\rm DM_{chan}}^2}$$

Typically ~3000 trials

PULSAR SEARCH: ACCELERATION SEARCHING

 Spin frequency of pulse is Doppler shifted by motion in orbit.

• Spreads signal in the Fourier domain, lowering S/N.

df/dt dependent on orbital acceleration.

$$a(A_T) = -\Omega_b^2 \frac{a_p \sin i}{1 - e^2} (1 + e \cos A_T)^2 \sin(\omega + A_T)$$

PULSAR SEARCH: ACCELERATION SEARCHING

Searching all orbital parameters is too costly.

- Approximate df/dt as constant over segments of orbit.
- Valid approximation for circular orbits where $T_{obs} < P_{orb}/10$.

PULSAR SEARCH: ACCELERATION SEARCHING

- For eccentric orbits, approximation breaks down.
- Either break observation and re-search, or reobserve in the hope of a better orbital phase.

PULSAR SEARCH: TIME DOMAIN RESAMPLING

$$A_{a,t} = B_{t[1+a(t-t_{obs})/2c]}$$

Stretch and compress time series to emulate frequency drift

 $\mathcal{O}(N_a N_t N_{\rm DM})$

PULSAR SEARCH: TIME DOMAIN RESAMPLING

$$\Delta a = \frac{48\beta c}{t_{\rm obs}^2} \sqrt{\left(\frac{1}{\epsilon^4} - 1\right)}$$

Ntrials depends on t_{obs}^2 (10 mins gives 700 trials)

PULSAR SEARCH: FAST FOURIER TRANSFORM

$\mathcal{O}(N_a N_{\rm DM} N_t \log_2 N_t)$

Best performance with prime factorable N

Real to complex FFT, exploits Hermitian symmetry to reduce complexity

PULSAR SEARCH: SPECTRAL INTERPOLATION

DFT response is imperfect at bin edges Interpolate to improve response to arbitrary frequencies

PULSAR SEARCH: SPECTRAL INTERPOLATION

$$A_{i} = \max\left(B_{i}, \frac{1}{\sqrt{2}}(B_{i} + B_{i+1})\right)$$
$$\mathcal{O}(N_{a}N_{\text{DM}}N_{t})$$

PULSAR SEARCH: HARMONIC SUMMING

- Pulse power spread in Fourier domain.
- Incoherently add harmonics to increase signal.
- For N_h harmonic numbers.

PULSAR SEARCH: HARMONIC SUMMING / PEAK FINDING

$$A_{i,N_h} = \frac{1}{\sqrt{N_h}} \left(B_i + \sum_h^{N_h} B_{(ih/N_h)} \right)$$

 $\mathcal{O}(2^{N_h}N_aN_{\rm DM}N_t)$

- After each harmonic sum we threshold the spectrum and mark candidates above the threshold.
- Sort candidates above threshold by signal-to-noise or power.
- Store candidates for application of clustering algorithms.

 $\mathcal{O}(N_h \overline{N_a N_{\mathrm{DM}} N_t})$